Suppose U is set of objects, E is a set of {0,1}-valued parameters 1 j$ X D/ M7 J% `5 S3 e' ?3 b
; v' L6 R) O6 V# D8 j" p0 h- s
for describing objects in U. For any u in U, define an additive utility 4 Y K, i$ T: m0 ]4 }9 f
6 D$ G9 o: Y# W) ~3 z9 k
function f as follows: 9 t0 C. G( {5 U0 Z# R1 F* B1 A/ w) v% l( Y7 v
f (u ) e (u ), (对e属于E,e(u)求和). d9 x& O- W, R- M( ~" j
) e3 k4 d$ r" t
e E s3 W9 |/ R2 J6 r- Q6 i3 |( e) H# b/ F
where e(u ) 0,1. u is called an optimal solution if it is one of the 6 n/ }' Z3 n. a1 v8 ~9 {* t% C% w
maximum points of function f with respect to normal order. For + P# D8 u; J) E% Q
) s4 r8 w. o3 @ N6 O, Z+ J8 G& o* Gcertain reasons, some values are missing. It costs if we want to find / p6 v% E! j2 t# D' H4 v$ W 8 ^; l7 U9 V, C: M9 t8 R4 L9 Eout what these values are. We assume that we know nothing about ) I7 X- t- ^' ^/ J2 a1 I; l2 m- A
, c" a6 {! d# v; gthe probability of these values being 0 or 1. So my questions are: " j& R) @! B" _5 R
( Z2 U9 O6 w. _! a0 }(1.) Which unknown value should we figure out firstly if we want to 4 Y' ~0 P3 L; P9 c5 T5 h
2 _+ O) u" _6 k; o8 Z: V
find at least one optimal solution?