Suppose U is set of objects, E is a set of {0,1}-valued parameters ' b& G5 V# X1 }9 G8 x c ; g. R& i4 {) W2 i) ]& wfor describing objects in U. For any u in U, define an additive utility 0 ~3 o& z0 Y2 m$ U8 M) m/ [# t7 ^- M! i1 c
function f as follows: & q- X4 i4 p4 r; { , Z$ ?2 C' }0 K f (u ) e (u ), (对e属于E,e(u)求和) / a# C* B5 i" w: ^& J 4 x0 B [6 F7 A7 Y
e E , q% z M% T& G8 K0 e
) m$ j x6 |9 k5 A% M
where e(u ) 0,1. u is called an optimal solution if it is one of the 0 ^& K4 _5 d. w* b. t4 F% P# W- r( y0 I3 e" R6 p4 m1 T
maximum points of function f with respect to normal order. For # I8 R4 l% j) _4 z% t$ v9 H 6 J0 e2 e+ a0 M, d/ M* vcertain reasons, some values are missing. It costs if we want to find & b W8 V7 G0 K- R' `6 t% ]* L) G: j6 }2 a
out what these values are. We assume that we know nothing about , o( V/ ^ r/ p' U, T* _1 h3 H3 _9 S& g3 W9 {
the probability of these values being 0 or 1. So my questions are: 8 F# {) Z8 t/ y2 y) H ( M8 w, n, U% D" n(1.) Which unknown value should we figure out firstly if we want to 6 A$ f- b2 j! V9 \6 ]: F' [
% q2 Y# Y( W, n4 S4 w l0 [- \: @ find at least one optimal solution?