- 在线时间
- 5024 小时
- 最后登录
- 2022-11-28
- 注册时间
- 2009-4-8
- 听众数
- 738
- 收听数
- 1
- 能力
- 23 分
- 体力
- 76982 点
- 威望
- 96 点
- 阅读权限
- 255
- 积分
- 27021
- 相册
- 1
- 日志
- 14
- 记录
- 36
- 帖子
- 4293
- 主题
- 1341
- 精华
- 15
- 分享
- 16
- 好友
- 1975

数学中国总编辑
TA的每日心情 | 衰 2016-11-18 10:46 |
---|
签到天数: 206 天 [LV.7]常住居民III 超级版主
群组: 2011年第一期数学建模 群组: 第一期sas基础实训课堂 群组: 第二届数模基础实训 群组: 2012第二期MCM/ICM优秀 群组: MCM优秀论文解析专题 |
2#
发表于 2011-11-28 10:48
|只看该作者
|
|邮箱已经成功绑定
matlab下面的kalman滤波程序0 V. B7 _& D9 X) T* C' {
clear N=200; w(1)=0;
. {, |# ~* h$ S. k) Yw=randn(1,N) - Z" D! `9 }7 T
x(1)=0; D( x# m! [6 S2 [& T4 u7 l0 g2 y1 k, Q9 o
a=1; `7 \8 G" O) S+ y
for k=2:N;
! c6 I7 p/ `% [' ^x(k)=a*x(k-1)+w(k-1);
" l% ]9 E7 v2 O; Q" r( vend # I3 `& B0 Z h6 ] e; d- Y
V=randn(1,N);
. c4 @" z! t: Wq1=std(V);
; e. n% Y, [$ D5 U! ARvv=q1.^2;
0 M3 W" J% E& W+ ~! Pq2=std(x); / ]5 H$ `" [' M! p( w; q: [
Rxx=q2.^2; : x/ L$ {. }* K" m% w/ K( m1 {/ R
q3=std(w);
: w- D4 f O- m% RRww=q3.^2; 2 I/ y1 }& S. V; n% ]2 ], Q
c=0.2; 7 Z7 W z6 ^$ m' j, k" }2 M' l
Y=c*x+V;
2 o4 U; _* {2 v3 }" M2 Ep(1)=0;
* {& g! u( n( u* Q; Ls(1)=0;
, a* G( s) r' O; t1 |# h! Kfor t=2:N;
w4 i" ?* J, Wp1(t)=a.^2*p(t-1)+Rww;
. S% G# q0 U0 f+ E" t ib(t)=c*p1(t)/(c.^2*p1(t)+Rvv); % S0 X E9 M. s
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1)); 3 W0 q7 Q% @% z ~; S
p(t)=p1(t)-c*b(t)*p1(t);
5 ]. G! J# Z% m3 J% k9 Yend
! O8 c3 {9 `( ~8 B5 n6 pt=1:N; ( Q* }% G4 ~+ j# V
plot(t,s,'r',t,Y,'g',t,x,'b'); ( Y. k& r% H( G% I0 h1 @" x, ^
function [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin) $ e( ^3 F3 F% `( l% L; `
% Kalman filter. 6 C; J2 Y8 A+ z; n3 A, b! e8 l
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...)
: s t2 q/ d; y/ \ b! S% $ n. V, A. J" o7 U
% INPUTS: ( o8 B# ^7 q" f5 P6 { j& p
% y(:,t) - the observation at time t 6 C/ u. M9 E# F# s4 W
% A - the system matrix & q3 ?/ p# a$ y( [
% C - the observation matrix ) V. _$ y4 s+ y' a1 ]* z# q; H' K
% Q - the system covariance . y8 s6 }0 r- m: Y- H
% R - the observation covariance
" w5 x2 Q. `- N( }% init_x - the initial state (column) vector ! s: h# e- k5 ~2 K$ M5 H9 w9 m2 B
% init_V - the initial state covariance
* i1 \) G2 {& T4 v% 4 P+ W5 s% ^) k# x2 s+ Q4 Z& }3 b
% OPTIONAL INPUTS (string/value pairs [default in brackets]) 1 v5 m0 l/ c' G
% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ] , h d* p0 K7 o6 @ D/ Q" r. `
% In this case, all the above matrices take an additional final dimension, / Q/ ~2 \3 Z o a0 z* t
% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m). % i4 r4 b" K) |8 V9 B
% However, init_x and init_V are independent of model(1). ) W: c# r) v! i) a7 d# D
% 'u' - u(:,t) the control signal at time t [ [] ] ! B# o2 l* A# I. w+ j9 r
% 'B' - B(:,:,m) the input regression matrix for model m
, C2 |& Q) D* f' d# N% , O3 K+ @. S: O$ M- y+ j3 {6 A9 [
% OUTPUTS (where X is the hidden state being estimated) % I* J+ _% `/ z* I6 i Q
% x(:,t) = E[X(:,t) | y(:,1:t)]
7 [( i/ n7 l J# F% V(:,:,t) = Cov[X(:,t) | y(:,1:t)] ; |: D# Z4 D$ f
% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2
8 a& g1 g y E/ D P* \" D! A" C7 v% loglik = sum{t=1}^T log P(y(:,t)) . v8 b% b. F J! e* }
% - V- m" D8 t, [2 ]# a9 j
% If an input signal is specified, we also condition on it:
8 v% v3 @: q7 g# o' J# w0 }% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]
/ ~$ `! n' N6 v. E% If a model sequence is specified, we also condition on it:
- R) ]( u- y [' O% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]
D. a2 c. r7 @1 Z& Q2 N' A[os T] = size(y);
$ n: y' g( W$ q. f+ q7 L& kss = size(A,1); % size of state space
$ @% T1 Z+ |3 `: _2 S% set default params . s- A2 y5 f9 m- C7 [! Z
model = ones(1,T);
5 M# D/ F- Q+ L# z N: Fu = [];
# I2 @% b/ @# gB = []; + ^$ `/ ~) o7 u
ndx = []; ( ^- S' b0 t2 t" F; k
args = varargin;
/ r X8 f/ D5 |$ W9 [* Snargs = length(args);
, v6 K. M* h% ?8 Z. R4 ufor i=1:2:nargs 9 N5 B- T( `/ |4 o3 y* H
switch args
3 L! ?3 r& q1 p; G! w0 `0 g$ L Zcase 'model', model = args{i+1}; ( o, N8 Y% r4 a
case 'u', u = args{i+1};
* Z' K8 S& l: v$ Z+ ccase 'B', B = args{i+1};
" h ?8 N& H1 ]3 b% Ucase 'ndx', ndx = args{i+1}; 8 f* ~5 f+ V$ D. T( \
otherwise, error(['unrecognized argument ' args]) % I8 p; y, Z" g4 V" ~; f5 M
end ' }7 X- m% [3 v2 W& \7 _, {
end 6 u! D) N; ~& M' T3 k
x = zeros(ss, T);
/ l3 I6 [# ]8 a+ q' mV = zeros(ss, ss, T); ) Z7 P P- e2 _, R U3 i( }7 A
VV = zeros(ss, ss, T); 4 U. S: [2 p8 I
loglik = 0; + ^. o! M- H/ D; T1 ?
for t=1:T m = model(t);
& V9 y, E+ F6 V5 ]if t==1 %prevx = init_x(:,m);
% x- T& P; O' Z2 o%prevV = init_V(:,:,m);
/ `& D+ M9 z4 p" e* z. D3 |8 N3 Gprevx = init_x; + \) A8 A1 W1 y; P% D! G- A9 Q2 d W
prevV = init_V; . A9 R ^" ]+ }- `
initial = 1; * ^0 e8 Y7 k9 [1 S3 y- L7 ?
else prevx = x(:,t-1);
0 O3 F' ?- p: l# K: R2 P& N* A8 W. {prevV = V(:,:,t-1);
+ k) f# F9 Z8 G/ C3 N* R' E+ Pinitial = 0;
1 X& F! ?" J, fend
( [. k% {8 [- N2 w" f9 z8 U7 S! L0 _if isempty(u)
v% ^& ^9 j9 }5 l6 ~[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... ) d W+ D) o+ a# }, Y
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial); else 2 T% u9 P0 J/ t. @* e5 p
if isempty(ndx) [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... 0 g% D4 h8 \1 V$ X" b
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 'initial', initial, 'u', u(:,t), 'B', B(:,:,m));
4 ]& a; {; X; W$ S& |else
. X5 i' f3 g8 b# f$ \6 [6 \; ]i = ndx;
1 m7 q% Z% X; b% copy over all elements; only some will get updated x(:,t) = prevx;
( b& |, I4 Q. @0 WprevP = inv(prevV); ) o0 l/ u: `$ @. `4 ]
prevPsmall = prevP(i,i); ~2 R$ ]/ h. _! P2 V
prevVsmall = inv(prevPsmall); + t* \3 j( e% z* i& L5 O5 D: g
[x(i,t), smallV, LL, VV(i,i,t)] = ... kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ... 'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
$ |/ \. t( ]( y4 P5 u$ t' [1 j" [smallP = inv(smallV); 7 A6 t, O9 k1 [
prevP(i,i) = smallP;
3 V4 x+ x0 }/ e' t2 v7 Z( {V(:,:,t) = inv(prevP); , W2 N8 G1 f' m8 @9 O1 ?) n
end , S! e& d! @6 \5 G3 c5 U! }
end
- x0 F* ^& z( H. f& F: Wloglik = loglik + LL;
) o9 X' O- v" c$ T/ Mend |
|