- 在线时间
- 5024 小时
- 最后登录
- 2022-11-28
- 注册时间
- 2009-4-8
- 听众数
- 738
- 收听数
- 1
- 能力
- 23 分
- 体力
- 77032 点
- 威望
- 96 点
- 阅读权限
- 255
- 积分
- 27036
- 相册
- 1
- 日志
- 14
- 记录
- 36
- 帖子
- 4293
- 主题
- 1341
- 精华
- 15
- 分享
- 16
- 好友
- 1975

数学中国总编辑
TA的每日心情 | 衰 2016-11-18 10:46 |
---|
签到天数: 206 天 [LV.7]常住居民III 超级版主
群组: 2011年第一期数学建模 群组: 第一期sas基础实训课堂 群组: 第二届数模基础实训 群组: 2012第二期MCM/ICM优秀 群组: MCM优秀论文解析专题 |
2#
发表于 2011-11-28 10:48
|只看该作者
|
|邮箱已经成功绑定
matlab下面的kalman滤波程序9 z2 Z& D1 R1 L1 j6 G% S
clear N=200; w(1)=0; * X7 I. c8 x0 x" w& m' `
w=randn(1,N)
9 `" \$ w" J* e# dx(1)=0;
2 I* L, e! k" v1 A# z6 ea=1; 5 w' G! ?6 Y( j, b! l5 Y* X% q
for k=2:N; 5 Q: B2 j/ |; L% i* F- I
x(k)=a*x(k-1)+w(k-1); 2 J, E$ L& u$ u* `1 P6 W) O8 M7 C! w
end
' ^$ D2 c2 J" S8 r: TV=randn(1,N); 2 G( s5 Y' W' g4 `+ \4 x
q1=std(V); 6 f% D8 g' G& h% p* S4 t6 B
Rvv=q1.^2; + A, E) o7 j4 }. s- K ]; V
q2=std(x);
* v4 u+ L7 O) D4 W5 N- T$ L5 U! K6 |Rxx=q2.^2;
% A- A3 t9 Z+ G" ?0 oq3=std(w); % ?( W1 D* M4 V7 B( r6 [
Rww=q3.^2;
; @/ x! [4 A: H# V2 N& m# y+ Jc=0.2;
|3 _0 q5 T+ E1 S, [# qY=c*x+V;
+ Y5 Y: H5 y9 F; c! f sp(1)=0; / w0 Q h% F/ ^& O' b
s(1)=0;
( f' e$ a$ v6 [" D0 B6 G1 `) Q, }for t=2:N;
. l# l' P5 b1 Z+ r, ep1(t)=a.^2*p(t-1)+Rww; 5 V5 F$ K4 w7 d% S/ W0 H
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv); " d2 m2 l& H& b; a) _
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
3 j0 @2 l. n$ z7 I+ T5 j; ]' Mp(t)=p1(t)-c*b(t)*p1(t);
% [. A6 M+ o! b4 _. m4 |! p/ @end
/ |! `" v2 i5 r# ft=1:N; + V* t0 d0 v! I: s7 y
plot(t,s,'r',t,Y,'g',t,x,'b');
8 m( e: \( W! c- w: J: ifunction [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin)
" ?9 K/ h$ Z, g- w( a8 B% Kalman filter. * d* n4 q+ V; c, {) a, \3 y
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...)
5 L8 f3 Y7 t6 |2 n2 s" Q% 2 f8 e) q: T" T+ Y2 \
% INPUTS:
3 ] s, Y9 d! x, D* L6 |' J% y(:,t) - the observation at time t
, K) J; C2 ]/ b8 V$ f. p* U9 H% A - the system matrix , q* P, Z7 V% \# o6 g! G- @
% C - the observation matrix
/ B1 Y+ D4 r! A# B9 d% Q - the system covariance $ t4 G, F* |! F$ d
% R - the observation covariance
# L; {, h7 W% |) S3 t% init_x - the initial state (column) vector
: j. ^' z; O k0 v" Z, ?5 ]# i% init_V - the initial state covariance
! ~. e* r9 W% C- R% $ T* ~$ C6 E3 x' r' F. a
% OPTIONAL INPUTS (string/value pairs [default in brackets]) & H9 I8 C& E9 I) B3 j
% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ] 3 O% N" S# h! G( z8 d# P' b0 T
% In this case, all the above matrices take an additional final dimension, 0 k. Q( q3 `0 H( |& M
% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m).
5 B1 w4 `8 t9 C5 A* g, \% However, init_x and init_V are independent of model(1).
) _! n3 |# u s% 'u' - u(:,t) the control signal at time t [ [] ]
5 }" k- L2 u3 ?& u8 `0 F% 'B' - B(:,:,m) the input regression matrix for model m
; |- `' }' D- g%
' p$ `; Q' T/ C% OUTPUTS (where X is the hidden state being estimated)
) J6 Z& j$ x* U% x(:,t) = E[X(:,t) | y(:,1:t)] 6 J- O7 R- p5 w& ` U+ Y9 r
% V(:,:,t) = Cov[X(:,t) | y(:,1:t)] 1 }" J+ ^ X* \- l
% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2
! r9 |) }; e/ |/ \- S3 J5 L% loglik = sum{t=1}^T log P(y(:,t)) " v4 E$ u" \. V6 A
%
8 {# @ E& c0 ]) {% l1 v% If an input signal is specified, we also condition on it: # @" @8 _* f+ E: j- Z/ F0 i' J1 A
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]
9 N2 U% N2 ~% i0 O% If a model sequence is specified, we also condition on it:
! C8 `& H `3 |+ c/ Y1 W( H1 B% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]
, }) d$ C7 @2 k( |[os T] = size(y); ( {& U2 I/ x& p4 S
ss = size(A,1); % size of state space / R7 P; @, R* _) ]' ^' C7 W* ]: S
% set default params 6 |% [6 }0 \2 u1 c9 K3 F4 t
model = ones(1,T);
1 V) G8 u7 o4 v% t% q: Cu = []; + r4 o. Q7 U* ?1 ~
B = [];
: M% t4 ?- }3 v4 ?: }9 undx = []; " X$ O0 Q# v& x( J6 p9 A
args = varargin; 0 z" {4 [% @0 Z, v. @
nargs = length(args);
) t7 v q0 v7 n2 A6 z- Y1 G8 N" yfor i=1:2:nargs
7 I! ?3 b; K( i7 e5 {* ~switch args % ]* ?! U8 n! E, u; U, s4 r
case 'model', model = args{i+1}; ) b& I4 T/ d" [6 ^
case 'u', u = args{i+1};
$ J- R; ^! n& ~' j6 pcase 'B', B = args{i+1}; 1 {* }. Z2 h8 S8 S7 P" y
case 'ndx', ndx = args{i+1}; 4 ?/ g6 ]1 S. Y( P& \/ m
otherwise, error(['unrecognized argument ' args]) & ~" P" p1 b9 z' Z4 a+ y: ~
end
" e. i2 e) v6 e. Tend
' b1 |* l8 t5 I9 W7 R1 Lx = zeros(ss, T);
/ M* ]* U: }! w" A2 Z9 gV = zeros(ss, ss, T);
+ t) r3 f* U% y1 a0 bVV = zeros(ss, ss, T); * c0 h$ k( M# f, n; P4 s
loglik = 0; 8 y0 S& Y& z2 U- m1 Z$ O1 B
for t=1:T m = model(t);
$ D, t: e/ q* `+ e' cif t==1 %prevx = init_x(:,m);
: V7 D# B3 C/ z9 W! D%prevV = init_V(:,:,m); # A0 N6 b7 x& b$ \
prevx = init_x;
% g* E) N: Y# }( q7 \prevV = init_V; z/ z9 P# i; G, i9 s
initial = 1;
; |8 _+ t, k' B4 _7 Jelse prevx = x(:,t-1);
# h; c- E1 _' f b$ jprevV = V(:,:,t-1); / n' R9 ^5 I6 J9 f `; |
initial = 0; ) E5 `8 Q" s7 o% c8 k
end
4 U5 K* f9 [1 Z! P; @* iif isempty(u) 9 p# Z* ^% S: ^( N2 m
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... ; G* D6 K& j- P' U
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial); else
$ G5 i% P1 g# t# F3 @5 e7 A" z# Z1 y if isempty(ndx) [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... - J* i+ z4 x2 ^0 h8 _; W
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 'initial', initial, 'u', u(:,t), 'B', B(:,:,m)); 4 B3 L/ @5 c3 s9 A, E6 _7 Z
else
- C- |8 J0 T6 h3 x) ~5 I( Zi = ndx; : A$ Y: }) s/ y) x) Y" D7 k2 K
% copy over all elements; only some will get updated x(:,t) = prevx; 1 o- ?& m' c1 g1 R
prevP = inv(prevV);
1 D9 o, Z' K+ s; u. V4 s: [* TprevPsmall = prevP(i,i); 3 ?0 `$ }! Z: |3 I: s% s. e
prevVsmall = inv(prevPsmall);
- x! D; J8 ~0 T+ n. u[x(i,t), smallV, LL, VV(i,i,t)] = ... kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ... 'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
# r7 i9 d# N, @, c- ?1 QsmallP = inv(smallV); 1 l8 N0 _2 j& U5 Q5 K) Y: X
prevP(i,i) = smallP; # y: ?. s/ ?3 Y3 w
V(:,:,t) = inv(prevP);
/ h: i& t6 L- ]; l7 I" [, Fend
% l5 j5 b% n I" ~% `3 [, bend
& S) s8 S" M# _( p) uloglik = loglik + LL;
9 m; }" r1 J% v/ L: Zend |
|