QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2974|回复: 3
打印 上一主题 下一主题

每日科技报告 第97期 Light Workout

[复制链接]
字体大小: 正常 放大
张立涛 实名认证       

280

主题

5

听众

2452

积分

  • TA的每日心情
    奋斗
    2015-10-7 09:09
  • 签到天数: 75 天

    [LV.6]常住居民II

    优秀斑竹奖

    群组西北工业大学

    群组Matlab讨论组

    群组狂热数模爱好者

    群组岩土力学与地下工程

    跳转到指定楼层
    1#
    发表于 2010-9-27 23:12 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 张立涛 于 2010-9-27 23:14 编辑

    Light Workout: Scientists Use Optogenetics to Effectively Stimulate Muscle Movement in Mice
    Researchers at Stanford University were able to use light to induce normal patterns of muscle contraction, in a study involving bioengineered mice whose nerve-cell su**ces are coated with special light-sensitive proteins.
    100926195020-large.jpg
    Closeup of the optical cuff used in the experiments. (Credit: Image courtesy of Stanford University Medical Center)

    The new approach allows scientists to more accurately reproduce muscle firing order, ** it a valuable research tool. The investigators, from Stanford's Schools of Medicine and of Engineering, also believe this technique could someday spawn practical applications, from restoring movement to limbs paralyzed by stroke or spinal-cord or brain injury to countering spasticity caused by cerebral palsy.

    The study, to be published online Sept. 26 in Nature Medicine, employed a technology known as optogenetics, which involves the insertion of a specialized gene derived from algae into the genomes of experimental animals. This gene encodes a light-sensitive protein that situates itself on nerve-cell su**ces. Particular wavelengths of light can trigger nerve activity in animals endowed with these proteins, modifying nerve cells' firing patterns at the experimenters' will.

    "Our group's focus is on restoring optimal movement for people with physical disabilities," said one of the study's two senior authors, Scott Delp, PhD, a professor of bioengineering and the Clark Professor in the School of Engineering. "With optical stimulation, we were able to reproduce the natural firing order of motor-nerve fibers -- an important step forward."

    Optogenetics was invented at Stanford by the study's other senior author, Karl Deisseroth, MD, PhD, associate professor of bioengineering and of psychiatry and behavioral science, who has used optogenetics in many experiments to conduct research on the central nervous system of freely moving animals. "This marks the first time the technique has been applied to the mammalian peripheral nervous system," Deisseroth said.

    The peripheral nervous system includes the long nerve fibers that exit the spinal cord to innervate skeletal muscle, producing voluntary movement. Skeletal muscles work as aggregations of what physiologists call "motor units," each consisting of a single nerve fiber plus the muscle fibers it innervates. At various points along the motor nerve, individual fibers exit the nerve to make contact with a variable number of skeletal-muscle fibers.

    Motor units come in a variety of sizes. Small ones have single, thin nerve fibers that innervate several muscle fibers, whereas the lone, thicker nerve fiber in a larger motor unit may innervate several thousand of them. Normally, when motion is initiated, it takes stronger stimulation to "fire" thick nerve fibers than thin ones. Thus, the smaller, so-called "slow-twitch" muscle fibers start contracting before larger "fast-twitch" fibers.

    Fast-twitch fibers are essential for powerful athletic motions such as running, but fatigue quickly as they burn through finite stores of their primary fuel, glycogen. Their more diminutive slow-twitch counterparts, which burn their fuel slowly, are crucial to delicate movements such as those involved in sewing or drawing, as well as for fine-tuning coarser, more powerful movements. Activities relying mainly on small slow-twitch fibers can proceed for long periods of time, while larger but more-fatigable fast-twitch fibers are reserved for brief bursts of high-powered activity.

    Previous attempts to restore lost motor function using programmed sequences of electrical impulses, delivered via a cuff placed around a nerve, have enabled paralyzed people to walk, if only for a few minutes. Unfortunately, large nerve fibers are more responsive than smaller ones to electrical stimulation, so muscles contract in the wrong order -- large, fast-twitch fibers first, then small, slow-twitch ones; this results in jerky motion and, soon thereafter, fatigue.

    For the Nature Medicine study, lead author Michael Llewellyn, PhD, of Delp's lab, fashioned an "optical cuff" lined with tiny, inward-facing light-emitting diodes, which could be placed around the bioengineered animals' sciatic nerves. The LEDs emitted blue light at intensities high enough to penetrate deep into the nerve, ensuring that all of its constituent nerve fibers would receive adequate stimulation from brief impulses of light from the LEDs. The investigators then showed that optical stimulation reproduced the proper firing order of muscle fibers, inducing contractions similar to those that take place under normal conditions.

    Next, using various measures, the researchers compared optically induced muscle contractions with those induced by the electrical cuff. Small, slow-twitch muscle fibers were activated at the lowest levels of optical stimulation. But with electrical stimulation, bigger fibers were triggered first. What's more, optically triggered contractions were sustained far longer than those produced by electrical stimulation.

    "With optical stimulation, the muscles retained about one-third of their initial maximum force after 20 minutes, and remained at that plateau for quite a while afterward," said Llewellyn, who is now finishing his work on an MD at Stanford. "Electrical stimulation completely exhausted the same muscles within four minutes." Consistent with this, optical stimulation initiated contractions much more easily in muscles composed of predominantly slow-twitch fibers than in muscles richer in fast-twitch fibers. Electrical stimulation, in contrast, induced contractions equally in both muscle types.

    The approach is, for now, primarily a research tool, Delp said. But it holds promise for clinical applications in the longer term if a way can be found to safely introduce genes coding for light-sensitive nerve-cell-su**ce proteins into people, he said. Just as techniques now use electrical cuffs to get paraplegics to walk for a few minutes, optical cuffs could be inserted microsurgically at appropriate places along motor nerve bundles, so that computer algorithm-controlled light impulses could induce firing in different fibers at different times, mimicking natural physiology.

    Delp and Deisseroth are conducting similar research with a different protein that, in response to light, inhibits nerve fibers instead of triggering impulses in them, in the hope of someday being able to control spasticity, as for example occurs in cerebral palsy.

    The study's other co-author is Kimberly Thomson, PhD, a postdoctoral scholar in Deisseroth's laboratory. The study drew funding from the National Institutes of Health and Bio-X, an interdisciplinary consortium at Stanford.

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    优秀的男人最有魅力!

    0

    主题

    3

    听众

    54

    积分

    升级  51.58%

  • TA的每日心情
    难过
    2013-11-20 21:34
  • 签到天数: 3 天

    [LV.2]偶尔看看I

    群组学术交流A

    回复

    使用道具 举报

    linmatsas 实名认证       

    53

    主题

    13

    听众

    3591

    积分

    逍遥游

  • TA的每日心情
    奋斗
    2014-12-2 09:53
  • 签到天数: 54 天

    [LV.5]常住居民I

    自我介绍
    额。。。。世界上最讨厌的事情就是自我介绍。。。

    邮箱绑定达人 新人进步奖 发帖功臣 最具活力勋章

    群组Matlab讨论组

    群组数学建模

    群组小草的客厅

    群组2012数学一考研交流

    群组C 语言讨论组

    回复

    使用道具 举报

    zjicmjqj 实名认证       

    0

    主题

    3

    听众

    40

    积分

    升级  36.84%

  • TA的每日心情
    郁闷
    2013-9-22 10:45
  • 签到天数: 2 天

    [LV.1]初来乍到

    群组Matlab讨论组

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-22 03:11 , Processed in 0.867562 second(s), 72 queries .

    回顶部