- 在线时间
- 5024 小时
- 最后登录
- 2022-11-28
- 注册时间
- 2009-4-8
- 听众数
- 738
- 收听数
- 1
- 能力
- 23 分
- 体力
- 77163 点
- 威望
- 96 点
- 阅读权限
- 255
- 积分
- 27075
- 相册
- 1
- 日志
- 14
- 记录
- 36
- 帖子
- 4293
- 主题
- 1341
- 精华
- 15
- 分享
- 16
- 好友
- 1975

数学中国总编辑
TA的每日心情 | 衰 2016-11-18 10:46 |
|---|
签到天数: 206 天 [LV.7]常住居民III 超级版主
群组: 2011年第一期数学建模 群组: 第一期sas基础实训课堂 群组: 第二届数模基础实训 群组: 2012第二期MCM/ICM优秀 群组: MCM优秀论文解析专题 |
2#
发表于 2011-11-28 10:48
|只看该作者
|
|邮箱已经成功绑定
matlab下面的kalman滤波程序
: m9 n3 Q' S. H2 n7 c. X; vclear N=200; w(1)=0;
. ]7 o& z t' d/ C* n3 b# Cw=randn(1,N)
# `: [1 a" }& q' e: Q4 W8 ix(1)=0; ' A( q# G* P& ^ }5 z9 q
a=1; 3 R; O3 C. r! |' R' c% @7 a3 e v
for k=2:N;
! Z# Y5 R8 ?6 i9 k3 s S4 I7 o" yx(k)=a*x(k-1)+w(k-1);
0 q( f: H( E( j+ X1 S, Tend 8 o0 e0 y7 ~9 E5 K
V=randn(1,N); / S6 {2 Q& L2 }- u
q1=std(V);
- ]6 N3 H2 z. R! c/ wRvv=q1.^2; 2 O! ]6 W) Y! B: l
q2=std(x);
. Q9 d: X0 j, l; D5 w/ n1 NRxx=q2.^2;
1 L$ X2 V* |7 D# e8 I$ h: rq3=std(w);
0 v7 p$ y0 i0 ?1 D( ], z* zRww=q3.^2;
$ y/ a$ h3 M5 p% c8 jc=0.2; + y$ n8 U$ t9 ~' W8 X3 b
Y=c*x+V; 2 D8 W& X- z) G6 k
p(1)=0; " n: S: {1 a' l; G8 L8 ^, H
s(1)=0;8 o/ Y2 L; n3 O- I1 R
for t=2:N; 2 L! ]4 y' r/ q9 G" M
p1(t)=a.^2*p(t-1)+Rww; 0 J( }( [! s, z+ W1 l
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
: W# K* h$ Q+ j. c% q" }0 Gs(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
6 ]7 C; S; C6 D) C+ w0 Q: Hp(t)=p1(t)-c*b(t)*p1(t);
5 V$ t K8 I9 V+ |end
5 D1 `4 G5 r# ~( \( T1 P mt=1:N; % I) t* c# z2 v; ]
plot(t,s,'r',t,Y,'g',t,x,'b');
% ~/ D" b4 E) G$ w% Ofunction [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin) 5 ?3 m- Z1 d+ @3 z/ I
% Kalman filter.
9 y( T. \% I4 s* N( L! g% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...) 8 k+ a# F% O8 z. S$ B f
% " p& R( X) {. C+ H+ Z0 s
% INPUTS: ! G, I- l" U$ ]: t- b; ]/ A' \
% y(:,t) - the observation at time t 6 J' s/ x7 _7 c# i2 V5 }( M" G
% A - the system matrix 8 y" t; a$ v* H/ k
% C - the observation matrix
# j% S- o% @7 l/ ? M% Q - the system covariance
8 U! P2 A: N4 S2 a+ g3 J: ^% R - the observation covariance
. \; V- \2 x2 i, }: }$ c: J* T$ n+ Z8 ^% init_x - the initial state (column) vector
- J9 c* v2 B- ~4 v8 h% init_V - the initial state covariance 7 M, r, k9 o: W* Q' R3 R. U
% : S! k2 W# ~1 j: R
% OPTIONAL INPUTS (string/value pairs [default in brackets])
) X4 w( L1 E1 a% ^' Q8 R& }' d% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
& D' G% x6 ], u$ y3 R9 [* Y8 T% In this case, all the above matrices take an additional final dimension, , ~+ T0 _' y8 Q' E
% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m).
& i7 l& H& D& @7 i3 o% However, init_x and init_V are independent of model(1). & a1 B7 Z6 g& y+ H
% 'u' - u(:,t) the control signal at time t [ [] ]
" x1 h6 W. d9 l% 'B' - B(:,:,m) the input regression matrix for model m 6 s' Y' p) [* U- d
%
* f- F6 ?# E" |# u9 l$ n8 w% OUTPUTS (where X is the hidden state being estimated)
+ R3 D1 k V" Y; }; s2 B% {1 f% x(:,t) = E[X(:,t) | y(:,1:t)]
0 `* o! q& E+ U; j* V% F Y% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]
1 m) b5 @# U9 e4 g5 g% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2 / s9 }! B; h+ y- c8 i( a
% loglik = sum{t=1}^T log P(y(:,t))
: t- k) k/ \5 e) R3 t0 Q# t5 D9 e0 s%
9 @3 I5 [% h# j* g% If an input signal is specified, we also condition on it: ! m5 P/ C; i" a3 o
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]
& A1 t+ B7 `0 n8 m% c% If a model sequence is specified, we also condition on it: ! F; a3 B3 D- I9 G$ d; R- P) r
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)] ' m9 c( _* p. m5 ]1 g; Z
[os T] = size(y); , p8 t* X: n6 {; x9 j8 H
ss = size(A,1); % size of state space 1 p* P9 }, b( E) M6 D+ V
% set default params ! t; K4 X1 o. h6 }. ]& F
model = ones(1,T); ; n' s! {- \- \0 p0 V
u = [];
0 Y9 u5 A' a) J/ E3 Z& dB = []; ! F. q0 ~) Z6 i& [. r v1 U7 V4 z% l
ndx = [];
& o6 J+ s2 }; N# Aargs = varargin; 8 I1 l8 w! F( n. ?# s
nargs = length(args); . ], b" j( t) w9 x# B0 f, R
for i=1:2:nargs 9 W& k: G! U8 r. ]& g b
switch args
, H; i* \3 h! B( ~$ ?case 'model', model = args{i+1}; # _0 S8 h0 H( U$ k; F
case 'u', u = args{i+1}; , z* u* o5 a# S* B$ b
case 'B', B = args{i+1}; 5 m# U1 A& y6 i3 E# t! [0 S) q
case 'ndx', ndx = args{i+1};
) |$ V3 J3 O6 b$ Eotherwise, error(['unrecognized argument ' args]) 1 J. C% t, V2 ?3 d! s4 [. J
end 2 ]$ i% K* W; U$ x
end
3 i% L$ u( U4 t" p1 X" C0 xx = zeros(ss, T);
; y# m7 `$ g% a) pV = zeros(ss, ss, T);
) |! I' X/ V a" ^6 |VV = zeros(ss, ss, T); 9 L1 o5 I7 b( Z- F
loglik = 0;
* [% m7 M2 G5 k% w0 l7 o( M2 afor t=1:T m = model(t); 0 k5 F2 W, @2 o4 e; f @
if t==1 %prevx = init_x(:,m); ; r; m J1 {% h, v) c' }; Q2 ~) Z+ Y
%prevV = init_V(:,:,m);
; f1 \- \0 X3 S" @& [0 B1 R' Iprevx = init_x; 8 Y; \6 J/ U4 ~
prevV = init_V; 7 i- B1 Z3 @$ h0 }) R: S0 S! I
initial = 1; ) Y4 ]& k8 c- f, [+ l3 N* @
else prevx = x(:,t-1);
# D. w, U0 e/ y2 VprevV = V(:,:,t-1);
4 K- B! N- G6 C: cinitial = 0; " @+ y9 v/ i E( G$ U
end
* s7 w3 R$ N/ c0 d7 j# |: w: zif isempty(u)
1 S& q& V; |8 B2 P8 S[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... . o: t1 }$ x# t. x9 t3 k" Z
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial); else
1 d" \9 L: y* _ if isempty(ndx) [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... B, P2 W; u% m- Y) d+ U
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 'initial', initial, 'u', u(:,t), 'B', B(:,:,m)); 7 F0 n4 G1 O; S! t
else 5 ]# S `* Q1 {5 U9 |
i = ndx;
r/ Q7 E: S% P' }; @% copy over all elements; only some will get updated x(:,t) = prevx;
4 k! F: k3 d8 Y: nprevP = inv(prevV);
0 b8 b) g' G2 [2 s- M6 Z2 @# tprevPsmall = prevP(i,i); 7 M% O' U `# q* j. }' h$ ]
prevVsmall = inv(prevPsmall); & @/ [6 ?& ?0 B
[x(i,t), smallV, LL, VV(i,i,t)] = ... kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ... 'initial', initial, 'u', u(:,t), 'B', B(i,:,m)); % ~7 `+ c5 o u M5 Y/ g/ W T
smallP = inv(smallV);
& I: F/ w2 O) A5 x$ _prevP(i,i) = smallP;
" r- y9 P+ N# T' X) I, W# wV(:,:,t) = inv(prevP);
4 N2 a/ O. \/ z m. e! B4 Qend . t& v$ u$ E# T) ]- Y0 m K+ b* a
end % ~; a1 C( l% E; T, ~6 N
loglik = loglik + LL; % N* ~ }# b' d2 T( Y$ Y) D
end |
|