Suppose U is set of objects, E is a set of {0,1}-valued parameters z- @& Z* W- i& ]1 c( G: s c5 y( S2 U
for describing objects in U. For any u in U, define an additive utility ' q$ t5 @1 \ y
* @* z6 h6 C z/ J) u* {! l+ u4 g2 }function f as follows: 8 \0 D, c. l2 O7 I 2 @- d/ P& X& y( z f (u ) e (u ), (对e属于E,e(u)求和) ! H# W y+ ?3 L# k* n3 X0 ` 7 }+ B D3 f' [8 y) @0 [7 [0 a e E ; \% U& _/ `; t" M Y2 i1 G% w 7 u5 \& K1 {& q9 X, D; Rwhere e(u ) 0,1. u is called an optimal solution if it is one of the 6 h7 l0 }4 B% {* z6 d! Z % c% K: ?+ @+ `+ Kmaximum points of function f with respect to normal order. For $ Q# r3 u' A2 S! |0 X- V# v0 n8 m4 z
certain reasons, some values are missing. It costs if we want to find Y0 T1 l7 T3 c# [/ \! S/ e
- V. {7 O7 e! y8 r+ P- A
out what these values are. We assume that we know nothing about 5 {) m6 L+ F2 [& j- R7 I3 ]6 v$ `
% B# V5 [6 J8 l
the probability of these values being 0 or 1. So my questions are: ) G% d( Z3 `3 O- t# \8 S8 z8 A$ T# v) j0 I" w$ ~/ x
(1.) Which unknown value should we figure out firstly if we want to . [' b: D& e- W* }2 A4 U
7 P5 u2 c- b+ k e' x& E2 r& w
find at least one optimal solution?