Suppose U is set of objects, E is a set of {0,1}-valued parameters & V% D& K8 g9 y1 U 9 t6 |! ~" p* S. R: V" L2 |1 d/ Ffor describing objects in U. For any u in U, define an additive utility % d- e3 @$ y; C: n; l( }- u
5 e* S" w2 ?4 j, I4 s$ v2 Dfunction f as follows: . \0 k6 u+ W1 A
3 t; C+ F) L7 \ u+ u( K0 a f (u ) e (u ), (对e属于E,e(u)求和)" @+ f4 m) |+ n/ p
+ w0 Z, d' p8 j) T6 B) N e E 0 O4 x5 G- K7 V$ V7 \$ M + @( J- J$ E. V) ywhere e(u ) 0,1. u is called an optimal solution if it is one of the ( L Q" S6 H, g8 c6 B% ]5 t$ u6 f k3 {8 Z6 e7 ?/ q
maximum points of function f with respect to normal order. For : t% C# s0 Q5 V( H% M 1 R8 W) e. j0 U0 n/ Acertain reasons, some values are missing. It costs if we want to find 4 k3 k2 B. Q* z& \( m
8 |5 s& Z1 M/ n. E9 {) d- r) @' |* s3 n
out what these values are. We assume that we know nothing about , e7 s- _" D8 N) P" q6 G* X
7 p4 V: @; \) }6 t j$ H9 L
the probability of these values being 0 or 1. So my questions are: - i& }8 q. V8 H9 p
& o7 v! s1 Y z5 w0 m j Q4 Y) Z0 W(1.) Which unknown value should we figure out firstly if we want to - O0 \7 |# B; V1 L: p. F7 g% R
9 R, I; D. F" b& ?
find at least one optimal solution?