- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
|---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-
( h" n$ u" ~% t
7 ?1 O5 \: y" o/ ~) w- Dimport math6 I2 a* Q: E1 G
import sys& [7 Y+ B2 V2 j( O
from texttable import Texttable
) I6 r4 o% g( f% l7 t/ p
9 P6 v9 h: B J% x5 o6 t
+ k k" T& w, }+ o) m7 T" J# u" u* e6 @& R# {7 Z1 ?( q
# 使用 |A&B|/sqrt(|A || B |)计算余弦距离
4 _$ T/ P, P& _) v! R#7 l" x9 r4 q& t2 n
#
u; T* n; \. [" ~7 V# l% p- M. v#$ j0 Z; I( n: v1 t' }
def calcCosDistSpe(user1,user2):
2 O5 C: D0 ~ D" U @& k avg_x=0.0; U! o: `+ l" V, x. T
avg_y=0.0
, O9 \: d' O, f2 ~5 v8 O3 G, @ for key in user1:# e9 J/ Z; ]. U
avg_x+=key[1]
5 n$ G9 `$ N# p" o3 ~ avg_x=avg_x/len(user1)
( V* R: k' A, ~5 U7 F* o2 r
3 d1 W) U& z$ _: | for key in user2:" T( D- d1 T6 @+ v
avg_y+=key[1]
: q/ Y& |- A2 {8 ^ u4 T& e avg_y=avg_y/len(user2)4 G/ J; J# N) W9 }5 ]
5 P/ T5 J7 f" i& ~3 x0 Q4 Q
u1_u2=0.0
" a# K, x8 S0 R( i for key1 in user1:
! q4 j' c5 C" m+ \2 N! I for key2 in user2:) P7 P% V& Q9 A' g$ y! _
if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:
. L8 B$ g, ]# `1 H5 c6 u u1_u2+=1; d& k- h+ ]4 f( K& D' }2 h
u1u2=len(user1)*len(user2)*1.0
: G, X' ^- e+ a9 J8 G5 M sx_sy=u1_u2/math.sqrt(u1u2)
' U5 R: f; ]2 o8 s$ h3 f6 G/ p return sx_sy L* | D$ Y6 z$ ^ Z3 W9 O
; n* {* b( `) Q$ s. t8 G7 M" |$ ~, w D2 g7 ?8 f1 p3 k0 v
#0 Z! o/ ^9 r, W0 K9 A
# 计算余弦距离+ A( e* [0 p! Y) ?/ V
#7 \: z) D" f6 ^7 |! _
#7 n, K$ g; c) q- [5 |: T3 g$ k
def calcCosDist(user1,user2):
; B9 m' I0 n1 B sum_x=0.0* W5 o) b. Q- \
sum_y=0.0' R5 X) i7 W, l6 }
sum_xy=0.0
# k9 ?4 R+ X/ j* X: B for key1 in user1:
/ d& [; Y9 V8 V$ P) { ]! f7 y for key2 in user2:7 @) _7 R8 J2 W1 X# ]. P
if key1[0]==key2[0] :4 M& o# R) A( v# S5 T7 W) t
sum_xy+=key1[1]*key2[1]
+ J: n4 c- H- v t) b" G# s sum_y+=key2[1]*key2[1]
9 X) ?! e( Q, H9 ^ sum_x+=key1[1]*key1[1]. I' W- n( i R* i- ]! L
3 D# `, P% b) j) S. } if sum_xy == 0.0 :7 z1 U1 ^; b0 o/ @: Q* V( G6 a/ d
return 0
/ T/ Q2 a$ W& h5 `3 |# C1 Z& X sx_sy=math.sqrt(sum_x*sum_y) 0 r# H& N! d/ Z; k* u2 R3 Z! `
return sum_xy/sx_sy" q4 a( n/ ]3 X% f9 M2 c$ d' z2 s, t- r
# Z! `- @, c5 |# |" w4 V
: [4 C8 y7 O* i/ |" v1 J
#
, X& J1 f+ h. K5 B#
0 k- M. t$ u; b$ Q# p, o# 相似余弦距离
0 j4 K V5 g# [5 C; \8 y$ [2 C#1 Z8 ~5 ~) i" y# {& ^
#1 }7 e8 C" K! b \
#" E: L; U6 P; j
def calcSimlaryCosDist(user1,user2):
* ~( H4 }, k o) D# K sum_x=0.0
, V1 s z/ c) E2 j, b sum_y=0.0$ U3 s1 b- ~1 Y1 V3 o. x
sum_xy=0.0
* ]# o7 {4 ] N" _4 ^" j; _ avg_x=0.02 A6 C7 Y- Q$ b5 B6 _! C$ M
avg_y=0.0) W, M- K8 S( N1 Q" }; O
for key in user1:5 p7 p0 c- k+ Y/ w" M
avg_x+=key[1]
% v+ m" V) U2 c, u$ v4 V5 A+ w avg_x=avg_x/len(user1)
/ L- q, U& f7 k5 V* e + ?. m1 }6 C+ n+ {3 a5 g7 d* Z
for key in user2: w1 q+ X# c, C2 d' w5 o0 R
avg_y+=key[1]/ o8 q/ B# }8 \+ V0 Z3 p
avg_y=avg_y/len(user2)
! E& W) E8 t. g0 z0 |7 z ! @. O% ^; l+ }6 t
for key1 in user1:
: U, E8 D8 W5 e+ `) D* D! A% u for key2 in user2:
# y: z M' d( g6 O if key1[0]==key2[0] :
% t- Y0 H6 e6 v' ^+ w. E sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)
6 A! F% t% W/ A sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)
* q( a) y$ t- S sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)
/ c$ |. u% m0 }, v
! ~& q0 J/ S0 v+ `# A" h if sum_xy == 0.0 :
- M; J2 P S& I; h) ] return 0( |" m5 P1 C* X
sx_sy=math.sqrt(sum_x*sum_y)
' x- E* }; f* i5 k9 W7 \ return sum_xy/sx_sy
3 \! w$ y$ \ e( g+ g, o3 W4 S
1 F" ?% R! H+ O* k) h- Q
E0 y' ?5 {0 j0 G$ ~& x+ ^+ c#
' O# `2 t1 d! ^# 读取文件
! s9 S8 L% m( A# T% g#
% z% d/ C! Q9 T! N' _! K. z, q* W## U2 x( S: }1 d: W- \, a! g3 B G
def readFile(file_name):+ f. W" }$ G( _: M$ w
contents_lines=[]' o4 r" u% f4 B" T" \ k
f=open(file_name,"r")
3 @' w- I2 B; X& E' V* k9 B6 |, \ contents_lines=f.readlines()4 ~6 N0 }7 m2 B& e
f.close()
* I# D: w7 c8 V return contents_lines
9 F* o! c- t: [
* }7 C# J# p3 f: T0 ~; o- B. z5 W8 J. l2 }7 R# \
. M7 _/ X# s: N+ o3 z+ @5 [#
) `2 R) C2 B5 ^# ^& c# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间
6 I+ ]2 I* _3 o$ T3 Y! f) L# 输入:数据集合" O8 K9 [; Y' }. S. `7 a0 `; f
# 输出:已经解压的排名信息
% t% X/ a$ L) |#
" k! G" j0 v9 |& b) ~( ]def getRatingInformation(ratings):9 k. p, a% R7 r( Z" | _5 o
rates=[]
+ k! X! a: w6 \' q/ G4 ^: a: b2 }# _ for line in ratings:
4 _( W$ s# K4 o$ k" d' J1 l rate=line.split("\t")
x! I5 h1 [, T; j% u9 m% { rates.append([int(rate[0]),int(rate[1]),int(rate[2])])4 v1 @8 Q6 v9 L+ x1 S/ ^5 r
return rates/ P' a# m2 z0 Y( [# @9 }+ v8 a4 x( K; c
( S. v" u- J+ r6 v6 B( I
1 b+ e9 w5 o/ N/ |#" d( Y, e0 i( q
# 生成用户评分的数据结构9 v! j9 d6 j/ j: |* b" B
# ( |) L! m8 X, X7 t, l% Z
# 输入:所以数据 [[2,1,5],[2,4,2]...]
& J2 I2 q+ q3 I" d$ [; @# V" F: W# 输出:1.用户打分字典 2.电影字典
* S9 I9 I3 v/ v# 使用字典,key是用户id,value是用户对电影的评价,
( I2 X! d5 x+ M& Z# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是2
! z! i* U/ e+ O! p. I* z2 A7 C; O#! k. S l5 W% J1 @
def createUserRankDic(rates):
: g1 w5 O3 d4 X user_rate_dic={}
9 o9 c {7 u; e! t: D item_to_user={}
# y# E9 P1 ?! x j1 q for i in rates:
9 M9 y/ S- M# \6 y user_rank=(i[1],i[2])5 Q5 U, b* `; b6 `
if i[0] in user_rate_dic: n" U( _4 t% m. N8 y; G
user_rate_dic[i[0]].append(user_rank), R$ E% V( o$ P" q% L( f" k4 B6 `
else:. t) v* t( y+ d
user_rate_dic[i[0]]=[user_rank]
, q% J# I X3 X% K8 ^
2 |' O1 I" k! Z# D, y7 F* l if i[1] in item_to_user:
! v( T' L" S, k3 `! N i3 B item_to_user[i[1]].append(i[0])
& E! F; m* s! X/ \ else:" g1 \9 @: C9 y! x( J; f: w: m4 }- P
item_to_user[i[1]]=[i[0]]
6 n# }( H% I; ?- `$ m1 Y) z
4 t3 j+ F' s' p9 ?( G. Y2 d9 k return user_rate_dic,item_to_user
8 a" J8 @' I& ]
W5 j# i5 S& @7 H' \, ~+ q* q( e2 e z7 e
#
) p$ t: X5 i: E8 t# 计算与指定用户最相近的邻居7 R. `) V% p j- U
# 输入:指定用户ID,所以用户数据,所以物品数据9 v' b. F+ J8 b; Z/ A4 X
# 输出:与指定用户最相邻的邻居列表: ]3 c H. h) [& m) H
#, G. T1 j: ?4 x0 r8 M, H& Y6 L8 Y
def calcNearestNeighbor(userid,users_dic,item_dic):- `; R4 U5 I) l$ _3 Y9 e0 u
neighbors=[]" ` u- ^( Q* N/ Y6 V, j4 w9 `
#neighbors.append(userid)
# Z; A2 G6 x$ O9 i. J for item in users_dic[userid]:9 L1 @, G* ]4 e! i& x/ k
for neighbor in item_dic[item[0]]:* t' M2 e* b I/ A0 D/ h% l) U3 M2 J
if neighbor != userid and neighbor not in neighbors: + s3 K, i/ r& W( Q; Z
neighbors.append(neighbor)
; r0 B: \% L# F, V , s5 j( r5 Y7 t' y+ g
neighbors_dist=[]# y& c/ j S f
for neighbor in neighbors:* Z% m/ L1 b8 A1 K# G6 \; I
dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe, g6 x- ~! [: s, p% \ H @
neighbors_dist.append([dist,neighbor])
q, w2 j, h5 p; c) a neighbors_dist.sort(reverse=True). a- M( x# _" K: b
#print neighbors_dist
# J9 x: S0 L: t0 ]9 g return neighbors_dist
! |/ H) A- ?5 Q L( `+ M2 S$ y- M% } X+ T# j$ |
3 V8 X/ W( r A2 x9 F. S0 D#. `0 o7 c$ t) _( a3 w8 |& q7 A* C
# 使用UserFC进行推荐
; `6 A9 n! k- [; X3 S& {0 b6 y; [7 v# 输入:文件名,用户ID,邻居数量
9 Z& D8 m5 i4 I) X6 |# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表
5 j& R1 E& W0 L#% K6 s: z' A3 G) U) Q
def recommendByUserFC(file_name,userid,k=5):+ U/ c3 C/ j+ P! [9 b, f
7 j* P9 R! l8 m# g3 k- X #读取文件数据
& k4 ~5 k3 P3 h" C8 l7 A; | test_contents=readFile(file_name)
2 N: H$ P4 Q; G. |. j" G* c 1 T( E) Q: Q/ K$ c! T2 k& S
#文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...]
& g; i5 O% g& K1 j0 w9 H test_rates=getRatingInformation(test_contents)& D$ B7 Z9 p, A( z8 Q" s( E' `5 @! u
x( T( j6 ?. v2 g #格式化成字典数据 ' `+ l! l1 X, ]( m0 R
# 1.用户字典:dic[用户id]=[(电影id,电影评分)...]' H" C8 Q- g% q' D5 S. S8 B
# 2.电影字典:dic[电影id]=[用户id1,用户id2...]
2 ^- {( u: ^1 I- [9 l9 J test_dic,test_item_to_user=createUserRankDic(test_rates)+ @& z( w0 F5 f
6 q$ S' P% Z0 x
#寻找邻居
3 q& @% q7 F1 r B5 z neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]
: a0 B2 f$ D l/ X% C0 O
. f/ U8 f* k0 Q* b6 V recommend_dic={}
9 |, [2 G* L( u for neighbor in neighbors:5 b0 p8 }7 l6 ?8 L9 R+ V
neighbor_user_id=neighbor[1]5 w1 R/ z8 _8 }. C5 a( P
movies=test_dic[neighbor_user_id]
. Y [1 q! ?5 i% {$ e8 c; d for movie in movies:
; y8 m8 \1 E3 q( z# C9 F #print movie3 h! @$ t& I+ D" `! s- i7 G
if movie[0] not in recommend_dic:
7 K9 C* k N; }7 W1 P( b8 A( b+ e recommend_dic[movie[0]]=neighbor[0]
% Z8 |* t! f, O7 V( o& N& e else:/ L" Z R% b( f* ~
recommend_dic[movie[0]]+=neighbor[0]; c2 C$ M% g1 K3 y$ A* U
#print len(recommend_dic), o; I1 N% T; Y9 Z
3 }7 E$ x+ [* m1 ^5 _
#建立推荐列表
4 M) z6 w, K, Y9 s, N+ G, U7 {( |7 ~' ?* g recommend_list=[]
) ?' u) P6 o9 ] for key in recommend_dic:0 i9 }& @) ~ r8 @4 c
#print key
( P4 z+ d8 s/ P$ Z Y% x recommend_list.append([recommend_dic[key],key])+ A: l$ c5 [+ f: L6 h* @
) F2 F+ i* [0 x' a
4 C! j- K; f9 k' ^( O; Q
recommend_list.sort(reverse=True)
0 C0 F* y" O; ^+ ]1 f# U( A( U1 v #print recommend_list
( m+ O3 k* t$ ` user_movies = [ i[0] for i in test_dic[userid]]) O: Q, }& ]: d- ^( Q
' \# [5 L) @; X7 Z
return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors H8 u9 ~- }0 V u8 `
( Y' B! U# X. g$ @6 {. i - I H3 V, k( y' L$ G9 ~' Z
% ?, d! N3 S$ I6 \) N6 M* f#, _2 H- n/ r9 Z6 Q/ Q
#7 g' w, K. O% t& G( r
# 获取电影的列表$ P2 v& ? N% }; X& F$ q- h& }$ U
#
2 L- @2 u+ s! j. ~#
, n5 R0 e* m8 M$ s#
5 v& n! I% |' I8 xdef getMoviesList(file_name):: j _- S. O7 X3 B* F& B4 o
#print sys.getdefaultencoding(). s+ j% Y3 y" W; Y( f" L: y
movies_contents=readFile(file_name)
1 G! S! ]* [, r8 X8 W movies_info={}* d+ ]8 M( d+ |' P
for movie in movies_contents:
' L: E. r) {. O, ? movie_info=movie.split("|")) w# C5 Z, L9 A( s
movies_info[int(movie_info[0])]=movie_info[1:]3 Y5 p+ v1 }% T! U. V+ W
return movies_info
7 H, j' F. o0 g! p2 t ) t! J/ J9 a$ g: k7 |
7 [4 A& S) w2 o* m
: L8 u: y0 }% L. U
#主程序
$ c9 G1 A$ q# u6 i8 K3 B#输入 : 测试数据集合
$ F$ D6 N6 [* J% Eif __name__ == '__main__':
1 |$ t' v( E. w0 @ reload(sys)9 j- o9 X: B* r7 k
sys.setdefaultencoding('utf-8')
+ x5 L& U6 J- _% V- s# Y: |+ }+ f movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")3 R4 J$ Y" ]) ` n
recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)7 }5 n& w1 `2 [$ Q0 U4 C
neighbors_id=[ i[1] for i in neighbors]
6 u) e6 f8 A. W( g. W8 z, b2 a" m+ a table = Texttable()$ V# v0 h! _2 @* y
table.set_deco(Texttable.HEADER)
/ J, F% {5 b x% W# t- f3 r table.set_cols_dtype(['t', # text - | V7 q$ d9 y( W. R; u9 E
't', # float (decimal)/ ]9 G. J7 P9 | S( J. S% E/ d
't']) # automatic
$ p1 Y$ T0 U k- c x table.set_cols_align(["l", "l", "l"])
* O- P: f2 e9 q rows=[]' o, T4 Z4 V' k( s/ {2 m
rows.append([u"movie name",u"release", u"from userid"])
$ N [% m, O2 \7 \* i o for movie_id in recommend_list[:20]:
- t# G4 M) k1 w- R9 J from_user=[]
1 |' N5 }, c1 G for user_id in items_movie[movie_id]:
Q5 n/ o1 D0 S& p4 F( |+ R( h* W/ J if user_id in neighbors_id:7 n7 h4 Z& ^ i$ `' x& ~
from_user.append(user_id)
E+ q/ ~: A1 O! z rows.append([movies[movie_id][0],movies[movie_id][1],""])8 O1 s; Y0 j: P1 _
table.add_rows(rows)& d! u4 _3 v9 S0 w$ A$ `: l
print table.draw() |
|