- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-
' M0 z# M' A6 q9 _, J/ |0 ^% {
% l$ g) |' L. W$ P p1 S m; v M; _import math. [+ m$ o: B( Q# O
import sys# v2 C1 a% H- W j
from texttable import Texttable
. K+ { S7 b, v6 E, S
9 |# h6 A- C' W
5 E( L* ^" ^$ k6 I( j, }8 s2 D. ]% y#1 s7 a$ Z9 @4 s& C# J" c9 ~$ \
# 使用 |A&B|/sqrt(|A || B |)计算余弦距离
( c h# u6 d1 q#. ?9 h; O0 h5 L S8 d' s$ W6 B# N
#5 E, A" C" l) e! g/ v# @
#, Q, T7 T. P; N# J
def calcCosDistSpe(user1,user2):0 R& g- |2 {8 }7 T
avg_x=0.0
4 j( k' X% J3 J2 I; ]( |( G avg_y=0.0 z) G( R2 ~+ M' P p5 n& }- ]$ [
for key in user1:5 a3 K) ?* }1 e3 g" h3 t
avg_x+=key[1]/ q% j, }7 y& I" I/ O
avg_x=avg_x/len(user1)
# u/ y9 `) D( K; c/ l& V+ A% o1 d
% r- V# Q. v; g5 d# {; V% }% B0 H, y for key in user2:& o8 y1 C; ]$ `' ^$ B, N3 U3 h
avg_y+=key[1]$ T6 B" s2 B4 o8 h4 c, i
avg_y=avg_y/len(user2)
$ B- {: l- r/ l* Y' w. a4 [ ' T3 B/ x a9 G, c4 h
u1_u2=0.0# \! n9 [- l% h; J' k$ e
for key1 in user1:1 F; G/ q/ ]; T$ a3 |
for key2 in user2:
2 ~- R4 W, C& R' b if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:
) |# M6 Z" t i6 w+ y* N u1_u2+=1
" v( t" W* {' T# A, d u1u2=len(user1)*len(user2)*1.0" j, d+ m& }( g: D5 r
sx_sy=u1_u2/math.sqrt(u1u2)( B) T5 o# Y; a# b8 n
return sx_sy1 u/ J/ ~& H B+ ^7 A
# ]. |3 t( ^& j. [9 C2 W! w. X
' ]( ~4 l9 ^4 \8 O#
& b& e" e9 e5 M+ m# 计算余弦距离
% A: n2 T& m- ~0 h: v#: x5 I/ \0 M6 \+ C, l) c' \( q
#' |: X1 \) n" a" ^4 W6 z- h
def calcCosDist(user1,user2):' L$ [. |% Y- n4 \6 L# E0 k9 t- n
sum_x=0.0
$ J# I/ F! h4 I9 ^+ Q* [ sum_y=0.0' v2 E( M" M Q6 _- r" V% x
sum_xy=0.0$ H# U2 ?+ P; {( G" N
for key1 in user1:
6 t N; y7 Z! H! T H for key2 in user2:
: `( y& d6 X p2 A if key1[0]==key2[0] :( O2 v) p( y( o, t& U; e
sum_xy+=key1[1]*key2[1], X* c0 n4 Z( `! |
sum_y+=key2[1]*key2[1]) F4 O2 T& r. O6 Z( l
sum_x+=key1[1]*key1[1]8 |2 L8 l7 t7 F
% g4 }# |* ^8 O: y1 v% j9 Z, C9 o if sum_xy == 0.0 :
; ]" d9 D8 ?/ w: o9 E' L- X6 E return 02 S0 g9 P3 e4 U9 l n* e* x! U6 G
sx_sy=math.sqrt(sum_x*sum_y)
: G1 N- x: M D0 g' e& [% g return sum_xy/sx_sy1 w5 G0 W- D- ]+ R
: c/ V# ?# Y, J" z1 Q& ] G2 h8 O
; `2 ?7 e# | y: ^7 z$ U
#
+ G0 U2 @0 G0 ~ R#
: [( D5 @3 t: m/ k* g1 u# 相似余弦距离
3 d, m1 D! x$ {. H% U6 w#1 c8 t; l4 ?2 ?; k2 r6 m' N; u4 ]1 f
#
L8 h6 g# q9 i#
, k1 p6 Q7 t& r, `6 Wdef calcSimlaryCosDist(user1,user2):& ~6 G* Y5 K5 Z* p9 C+ I/ y3 _
sum_x=0.03 a2 L# P4 `" U* j9 Y0 h/ r' G
sum_y=0.0
$ w; A8 u6 N5 q; n9 c6 D sum_xy=0.0, w# \% S6 {, Q4 Z* {- L) @# c( S
avg_x=0.0
9 u/ {+ U1 n7 z5 `' O) j avg_y=0.0" ^% W0 v' P" }5 Y5 z, H+ y
for key in user1:
8 Q! O* h, M, F2 a, V/ v avg_x+=key[1]
) m5 y9 j6 {- s4 M avg_x=avg_x/len(user1)
! r6 o- j8 g- X# O6 v( O
- d; g9 }2 A. ?# s$ x for key in user2:1 K- ]+ n s# |6 }0 G" r1 n4 y
avg_y+=key[1]
, I) S' y5 i( o8 \3 _5 n' ] avg_y=avg_y/len(user2)
5 {3 N% c- ^+ w, i2 {1 z& O' L
3 }/ O! A- ]$ n* i5 L* {% A5 T for key1 in user1:
- C& X6 I/ [- k j6 s for key2 in user2:
5 o; H5 H ~' L" U% w. \- L if key1[0]==key2[0] :
9 h) X' ~+ q8 k5 ~* P# N sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)
* a9 A8 H% o. [, p2 s0 c2 } sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)0 v) t* C$ W- _+ |) i2 ^" G' C
sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)
% M1 B) L3 G: g
5 v1 q( q+ @0 Y if sum_xy == 0.0 :
' S3 k7 b2 t4 g9 m return 0
1 S! n/ {" }* \/ W- H: l3 T O* @ sx_sy=math.sqrt(sum_x*sum_y) + q/ K( w( I% q8 s2 h2 L
return sum_xy/sx_sy/ d/ {& a D; f ]' q. W/ C
z8 k2 D" n) `0 c9 U
0 ^' y: k, j1 R( m#4 Y4 p/ o0 T; f l
# 读取文件
; p" J- s( c+ b% n" E$ B#
$ Y" l6 ?* Q9 x- _' M2 ~6 x a#
3 A u4 F" O( L5 w7 S* G: u* Fdef readFile(file_name):, H) }* Z t/ y4 W* x' p/ e% a
contents_lines=[]: o7 S* G) _5 b* r5 g; L! s
f=open(file_name,"r")- j x0 @6 D& a3 V, P- \. `% ?, p/ {
contents_lines=f.readlines()
# A) [) r8 L) I f.close()
5 B8 H5 d5 r8 z, l* ~7 P6 ^9 T- i return contents_lines$ k/ l; w5 M" C# ~& h: M
8 Y0 @" E# E; B v, D
% W# \+ Z3 ~- e- ?1 E( r& Z! O n% l
3 g, B; m; \6 }) Y9 p#5 y5 B' k: m |. ~- H! }
# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间
8 Y, m! \0 B, o( E+ I8 @# 输入:数据集合
# w5 w3 u u7 f) T+ {6 p. t, R# 输出:已经解压的排名信息
0 T4 E- N j. Z+ @5 V' e6 `#
; Y" w# P/ S6 S$ P- s0 N4 Q1 mdef getRatingInformation(ratings):3 T, t2 l/ H3 X5 E- o: F" B
rates=[]' X& X& C( Z& R$ W3 w
for line in ratings: s. o# V# d0 s5 G
rate=line.split("\t")3 C2 C( T" {. p, z8 u
rates.append([int(rate[0]),int(rate[1]),int(rate[2])])
5 t2 Z' x% Q$ W2 m! ~8 l return rates& F+ L* G) M0 _7 a) y3 |5 t
6 K1 G8 d5 A( Y! t, |( n+ x+ i- b/ Q
" E1 S+ B* Q5 m# r% s/ e) o8 d" l
#: X0 H" S6 t% O) e/ _# \2 F
# 生成用户评分的数据结构- I' X; j$ J/ n$ n6 @# D% C
#
6 t; b3 R, |7 }# 输入:所以数据 [[2,1,5],[2,4,2]...]
$ M1 Q6 H) y& c( i$ ~! q3 G# 输出:1.用户打分字典 2.电影字典* H1 l) x; u! i i: b# p
# 使用字典,key是用户id,value是用户对电影的评价,) u1 \6 ?) o, n, C0 {
# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是27 w F$ n- U, g4 z
#
: D F. h; E3 `- ldef createUserRankDic(rates):
* Q% t& M9 Y# l user_rate_dic={}
. o7 U; K# z4 u3 o; d& a1 b item_to_user={}7 e6 a+ s3 v3 `; N0 c1 E
for i in rates:
3 s* ` L1 ?9 o! b9 x3 z; F1 m- X: R user_rank=(i[1],i[2])
7 [: L C7 _1 N if i[0] in user_rate_dic: z, }) I* f \7 y/ b7 ]* R
user_rate_dic[i[0]].append(user_rank); n5 X/ V5 e" I8 W, [" P
else:
+ |, l# l3 F( q' a user_rate_dic[i[0]]=[user_rank]! E5 M, _! d# R7 I# N6 s
" e( g& `+ h% u8 ~* c/ G
if i[1] in item_to_user:
3 m6 v5 M7 Y% W% ^1 H9 l) m item_to_user[i[1]].append(i[0])& i# F$ U2 E* B. O* x {
else:
* ]5 Q% t" A, N! i: m9 E item_to_user[i[1]]=[i[0]]
+ y2 p8 j8 h6 x6 J8 ~ 5 ?3 q" G2 `. a( g" h
return user_rate_dic,item_to_user
) I- g/ d- v% p! p Z& t; x* R5 \: |) [8 Z
3 Y! f1 c% X, I, V1 q
#
& N. @- {0 t( z7 s# 计算与指定用户最相近的邻居
' m' l" k0 e9 K- ^& A% O0 C# 输入:指定用户ID,所以用户数据,所以物品数据
& d9 B0 G4 b1 h2 Y4 d% g# p2 c0 L# 输出:与指定用户最相邻的邻居列表' A1 a# f5 N0 X* E
#
6 b, V1 `. K8 Sdef calcNearestNeighbor(userid,users_dic,item_dic):6 [! Y! U! e: k! J Q- a, q
neighbors=[]
; `. p8 w# j' L, Y% t #neighbors.append(userid)
, a4 C- Y; M, Q7 w* O( \1 d; `0 v o for item in users_dic[userid]:
6 N" z: D2 M" L& ]. w for neighbor in item_dic[item[0]]:
9 f9 g! z; g3 d, \8 \9 ]. Y if neighbor != userid and neighbor not in neighbors:
) v- Y) r5 B1 D0 N' S- J; n neighbors.append(neighbor)* [% A' U4 @$ W5 p/ y& M& `+ o. u2 S
. Z( E2 v% s( { neighbors_dist=[]
5 V* m6 m! g( }1 N2 I1 v for neighbor in neighbors:& P$ A7 [" o1 T( z6 s# D
dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe
: J$ X+ X; J/ c8 G neighbors_dist.append([dist,neighbor])
7 F- v' J5 ]4 W8 t+ x neighbors_dist.sort(reverse=True)3 s8 [, s$ q/ \' [
#print neighbors_dist
. @' G/ I3 Q, y7 k8 w return neighbors_dist
+ @, i7 o0 ~6 | ]+ z7 j$ c8 @& v N& E
% D3 N4 t/ M! } }
#
: @( H' F4 |. P3 S2 M# 使用UserFC进行推荐
" i5 t+ P0 S! r% q4 j# 输入:文件名,用户ID,邻居数量
0 q' H" ^; H) W) T! V# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表: A. |0 b1 g# b- y8 X5 v
#
~7 ]( g0 Y7 l5 K+ w' qdef recommendByUserFC(file_name,userid,k=5):* v {% y, [& g: P5 \% G! G; _' ]7 ^
8 c: C1 @0 V. f* J% R #读取文件数据
a I4 _ }& \' h$ t% Z5 c6 ` test_contents=readFile(file_name)2 e: F# D B/ _% T( Q
7 L3 b$ |3 t% F ?, ?0 i4 \/ g
#文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...] 4 k* K' _: E5 Z
test_rates=getRatingInformation(test_contents)7 s" q. }6 z! z; q
8 f# u% _1 w4 ^
#格式化成字典数据 3 n; V- t$ C, a; c
# 1.用户字典:dic[用户id]=[(电影id,电影评分)...]
3 T( [7 h- X ` # 2.电影字典:dic[电影id]=[用户id1,用户id2...]
8 u) C, ?6 ]5 B5 R1 n1 b test_dic,test_item_to_user=createUserRankDic(test_rates)
# o: g v, A3 l; R3 _- P3 @
+ D6 [5 V$ s# U #寻找邻居, i5 _% D/ c0 [! d
neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]
+ ]1 U' @% \) T: w' h8 J
2 O% i. x' l6 L @$ e7 h/ b) { recommend_dic={}4 `1 s) Y* i* Y, K
for neighbor in neighbors:- g) X! K$ u1 T/ f4 \' w4 k. e
neighbor_user_id=neighbor[1]* b/ x, E0 B2 l. {, e l
movies=test_dic[neighbor_user_id]
" x+ T* S4 K( T7 C7 Q" V for movie in movies:# I. U! g% U8 o/ Y- Y# P! k
#print movie0 K7 @5 J: z& _9 U, m
if movie[0] not in recommend_dic:2 V4 V" {& S% K$ I- T) K; K5 i
recommend_dic[movie[0]]=neighbor[0]
0 V. Q( R# i+ j* a) X! }# t else:, b' y* s% ]- h l1 v
recommend_dic[movie[0]]+=neighbor[0]2 t5 l2 k0 t( ]( O) T: T/ {
#print len(recommend_dic)
/ K) V+ Y) @& R9 h( K
* @) N' R2 ~8 O #建立推荐列表 N4 ?9 v3 m8 d/ U
recommend_list=[] i' F {6 S" M$ ~/ E
for key in recommend_dic:: @& z9 M$ `6 { r* l
#print key2 ?5 K$ x; U5 P0 v7 n
recommend_list.append([recommend_dic[key],key])) \: J+ @; W7 d& f& W
( c0 ~: A7 E3 R2 }$ w
+ L$ k. l. l n recommend_list.sort(reverse=True)
( A0 ^4 ^! k' V. r1 K #print recommend_list4 ^7 y* Q$ z9 b" B& D* E$ N- o5 V
user_movies = [ i[0] for i in test_dic[userid]]' U) @" `% }: @. L2 G. T- F' D5 d7 ]
|: _7 T7 f/ L1 s
return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors
: [' V5 o% S5 Q1 k$ f
8 b G* l% W# s, ? & u; b: h' Y1 i' ^* I
( Q2 Z- l1 q- Z) }( k, n) j% A9 P
#
7 a4 l* O( Q1 v3 h; O ]0 A#
6 ~+ O5 l0 i" l, b5 r# q# 获取电影的列表
7 y c) f& n( O8 d- c, d#2 e3 M w* Y- N0 P
#) E H' g7 o) a* H6 C& F
#
/ {" x9 ]. c* c% U V% R) \def getMoviesList(file_name): j/ v1 i3 X9 ]
#print sys.getdefaultencoding()! j, i& }7 j ] G0 I" I
movies_contents=readFile(file_name)
8 Y$ Z' Z1 U. R5 F6 p movies_info={}! Q. p+ U ~# b0 C
for movie in movies_contents:
$ v W. b' Q& X movie_info=movie.split("|")
/ C6 x1 {' l; y# G( n/ O' U movies_info[int(movie_info[0])]=movie_info[1:]; h7 ]. x2 e5 n+ r
return movies_info! ^, Q: {, C% {( D' H. D
" K0 r2 a: r( m6 w5 D% n* e1 m
$ P' p5 [! w9 A9 Q+ E- s( l
& ?8 o" \) Q- q$ }#主程序+ [- N1 G2 t8 d. U& V
#输入 : 测试数据集合
; I) |( ?( n0 w$ I- }; _" nif __name__ == '__main__':' R7 @0 Y2 C! f. S; w% g- q" Y
reload(sys)
( I- J K; D5 c1 l2 ], A( L( m sys.setdefaultencoding('utf-8')& f7 i6 z6 K1 v( t( e
movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")& B" T5 L4 ^8 c
recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)
8 B, D; p0 h* i8 q$ r9 q- ]2 Z- [9 t. P neighbors_id=[ i[1] for i in neighbors]
$ G- O2 S7 C4 S; S table = Texttable(), S; [, q. O1 p/ X( v9 W2 j
table.set_deco(Texttable.HEADER)
$ N+ ?& l2 M- k% I, Y% H K table.set_cols_dtype(['t', # text
& Z" M7 C9 A# G/ R 't', # float (decimal)
/ f) G' E1 S0 ~5 J3 r, [ 't']) # automatic2 d ]6 }" d' W* s, h+ V* p2 @ E
table.set_cols_align(["l", "l", "l"])
/ d: Y) m, U6 m; O3 R/ G8 J rows=[]
! {9 F% D2 g4 `% s rows.append([u"movie name",u"release", u"from userid"])
( r6 i: o( N+ r* ~# r for movie_id in recommend_list[:20]:
' H! g7 |; t. d- I" f8 j from_user=[]
+ l( w1 S6 M9 d% J% @ for user_id in items_movie[movie_id]:
0 }, |) A+ i0 K& h. ], a if user_id in neighbors_id:: l" e6 g0 s! D: f
from_user.append(user_id)/ j# s" ~/ F+ @7 |3 N
rows.append([movies[movie_id][0],movies[movie_id][1],""])
; P/ n5 h( `& p) Z* w3 I# _ U table.add_rows(rows)
% A3 l; H2 x( \8 `5 l U print table.draw() |
|