- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-5 e0 C. y) `7 ^. J ~ z- c
7 @7 Z: k; [+ V; V. t
import math
) I( c) G5 X4 wimport sys
s5 D8 ^$ q! H3 rfrom texttable import Texttable
2 u9 j M: @4 g# D9 _/ n2 y4 E
8 j. b* q+ E4 m/ U9 s, K4 ^' z
1 ?, U; _, i! D+ ^* ?; x#
# x1 q5 u) Q$ A: ]. X" i0 u. ^/ v7 [# 使用 |A&B|/sqrt(|A || B |)计算余弦距离
$ S$ C2 O+ u% |( @#
; T3 ?- {* D9 U1 N#; b( f1 K5 c T
## |. ]/ H+ ^; q
def calcCosDistSpe(user1,user2):+ Y# i3 u* V" B9 z+ z% D+ ]
avg_x=0.0
) h" ~- J& D7 ?" I$ C W2 i avg_y=0.0% o- K. U, O; K- E) I, D, M
for key in user1:
+ h* ]- c! D) U1 A2 ]) `7 t avg_x+=key[1]2 u4 x. `6 q. ]: @
avg_x=avg_x/len(user1)
6 Z3 Q. i; \+ S( U 6 y- K; |/ Z; m) `: `
for key in user2:
" Z# k: h6 U9 b& o# J# ?' G* t% a, P avg_y+=key[1]; U( N5 m7 ~% N% E$ a
avg_y=avg_y/len(user2)7 b. N$ ^6 n3 I7 ]& n6 e
8 S+ x4 B6 Y( Q% I6 y% ] u1_u2=0.0
8 j) e. ]$ j2 V8 q1 j for key1 in user1:
' h$ [- g! \( a for key2 in user2:7 ~5 {# D+ i5 V- E- l% }
if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]: g" c2 Y4 P* o
u1_u2+=1
7 B+ h1 k, N% S8 x u1u2=len(user1)*len(user2)*1.0
3 m4 d6 j' h* {* o sx_sy=u1_u2/math.sqrt(u1u2)0 ?9 p6 h, t0 b# c9 a
return sx_sy
# p: ~7 T$ X" C! q. u' V. l8 k; |5 D- m
; ]+ O6 u- v* W5 T8 j
#6 W ^. \+ R# y9 |& F
# 计算余弦距离
% {8 [- H$ N5 J3 d- S2 H#* i( i4 C9 A0 E" n0 P) W
#
# j4 T) F+ r9 m! xdef calcCosDist(user1,user2):
4 P. H/ \+ e4 X9 a6 k0 X0 U sum_x=0.0
" G. k# g6 K& u N: ? sum_y=0.0, j a4 ^0 b0 z: y
sum_xy=0.0
; C, k5 w5 Q- I9 j+ I1 o for key1 in user1:) V- i Z e- t* |4 q
for key2 in user2:# j0 U1 a2 w7 y5 V
if key1[0]==key2[0] :
2 t6 B; o4 p$ `, X7 m& q sum_xy+=key1[1]*key2[1]
' e4 G! V9 x4 Y" {% B sum_y+=key2[1]*key2[1]
& Q# z" v# }; U sum_x+=key1[1]*key1[1]
- |% N1 g; s9 S6 `! B0 b, x * [) x! H& x6 X. @/ Y1 b5 z( M
if sum_xy == 0.0 :2 r2 Z- S2 o% ?" s. F4 ?+ i8 j2 j9 k
return 0, E9 N7 w s( P7 i# f
sx_sy=math.sqrt(sum_x*sum_y) % c4 `% E- x: y9 W
return sum_xy/sx_sy
) D2 W# L! ?& ?, y, c
. f2 p% o1 B$ p& F6 V- M1 K L1 G1 g n) \' a' }
#; x* A* a0 n( q7 [4 K- W
#
( a6 h$ M" H8 A+ Y- B L# p, B# 相似余弦距离
- ]& t- t ~2 k. J$ m7 R* z#
) z! p" o1 J& k, s" P& l#& c( w/ B/ f( b$ C) |4 B8 t
#6 L& a1 S! o6 Q) M0 W# q# v
def calcSimlaryCosDist(user1,user2):9 @0 W6 K( D j
sum_x=0.0
7 A6 S& _. _' J; D# O) ^& i sum_y=0.0
9 m8 V; l" h- {6 A' ~ sum_xy=0.0
0 U+ {% p+ }( L) F" i% d7 b avg_x=0.0% U4 ~* V% Z5 q2 h1 ?0 f% q5 e( J
avg_y=0.0/ `# w2 Z8 A" T
for key in user1:
( [0 o8 L, B& F avg_x+=key[1]* d* p6 ?6 b5 Y5 A# | P
avg_x=avg_x/len(user1) v1 \# R& V w% C" ], ^' ^
; V! E* ^) O+ u2 W* ]! x for key in user2:/ q" u- s2 o) r z y* j' E, M
avg_y+=key[1]
9 ^9 _0 C# v" R avg_y=avg_y/len(user2)
/ r; U( X( J1 _' |
T7 z( v' i w5 z for key1 in user1:
! o' u- U \* ~3 ~) K/ S; E: \ for key2 in user2:; E, B2 W8 s! B& t4 p c
if key1[0]==key2[0] :3 O; }: G+ X5 I0 H% u1 u3 p- I8 H1 @
sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)5 i: Q d9 ]& U% u
sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)
0 m7 D2 ?1 z9 W/ z sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)5 I0 \( {7 R3 S4 @
5 b/ E6 ?0 z* I8 R/ U2 S4 | if sum_xy == 0.0 :
$ i- V4 w/ ]) p6 v' \- _ return 05 S$ z7 t5 p9 m! i, q
sx_sy=math.sqrt(sum_x*sum_y) ! N! X+ D4 u2 H/ K! J/ ?% d0 l
return sum_xy/sx_sy
: \, m6 Z+ Q; @; T0 [/ L2 R' n * E- i, V% E3 u A
- J. @ S4 J% y- h7 }* e7 R$ ?" W
#$ {" A/ p Z! p$ Q
# 读取文件# ]4 j5 z- e" {( C, c
#
- ]8 E, M6 P! M$ x) I3 i## ?5 M9 l! M& w, b# @
def readFile(file_name):. I* {4 W7 _( O9 r+ X) Y* ]
contents_lines=[]
: Y1 w% L: y. S8 M' ?% d% t f=open(file_name,"r")2 }7 X6 `- O0 T9 W0 i3 x0 X$ R
contents_lines=f.readlines()
$ G* M7 l1 O1 \ f.close()* A7 K. e3 B P. q" h/ l% @0 k: H
return contents_lines
. w, ]3 q" U0 y' D4 B% q* a0 l. k. f3 e% x2 j
4 y1 a% D" q I% Z& s& U2 G. H7 ?& \! |9 g9 k) |" ]
#* X B4 B" o _- S j
# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间
. \- p7 j+ ~7 v4 Q. ?+ g# 输入:数据集合
+ i. H: u; q) }" ^5 t# 输出:已经解压的排名信息
% K- z5 O3 o( _2 \+ i! \#
! o5 w6 }0 {5 B; o& |4 ?0 ndef getRatingInformation(ratings):
) B7 n7 ]- p9 L2 Y2 j. L rates=[]6 S+ K5 s0 L; S! y
for line in ratings:2 {; o, X) Y* v3 |$ B; Y0 W, ]5 F. d
rate=line.split("\t")+ J8 r5 J0 x& v! N% r* V
rates.append([int(rate[0]),int(rate[1]),int(rate[2])])
9 U z4 C) h$ Y; Y return rates0 X/ d4 h1 k& y" v/ A z
, E6 O/ k8 A$ T: _/ p$ g9 o
$ F0 \8 G. ?6 Y0 Z; ?3 ~3 k, L$ X#3 [9 l1 F% l* t7 \# ?
# 生成用户评分的数据结构" H1 y3 {( D8 Z' J0 Z
# . f$ w' }- w8 j3 d3 s& |* _$ W
# 输入:所以数据 [[2,1,5],[2,4,2]...]
- s2 Q+ p% T7 y# 输出:1.用户打分字典 2.电影字典 O" O% |, }! L j, F
# 使用字典,key是用户id,value是用户对电影的评价, k: d5 l, K5 `) E: Y9 w$ {6 t/ v
# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是27 N0 g. F: D) b' x' y* B
#
: H3 c/ |) c) W, g2 q% n6 Pdef createUserRankDic(rates):
- A* W/ l' e# x) g user_rate_dic={}
+ D* e3 Z$ `- h( b$ S item_to_user={}
: O6 T5 M6 x4 j5 D for i in rates:3 ]- M9 N, a0 O2 q2 V
user_rank=(i[1],i[2])9 T& e7 u8 M- B9 k- W6 G( ?" w/ Y
if i[0] in user_rate_dic:* g: S/ a, ^6 D
user_rate_dic[i[0]].append(user_rank)9 N8 k+ x& l5 A) L: d
else:
+ N5 Q/ l) h1 U6 Y& W$ H* G user_rate_dic[i[0]]=[user_rank]
* e4 d3 i5 A: P+ y& C 9 r% V# H- v* t! W
if i[1] in item_to_user:+ F( X: n' J6 k
item_to_user[i[1]].append(i[0])
- \ |( ^7 v2 s9 y; p else:# C+ n7 K' G, S" D$ j4 m0 x
item_to_user[i[1]]=[i[0]]# [3 a% [3 l- r7 _1 b
& K7 f5 u6 s/ F return user_rate_dic,item_to_user1 t1 [: L. @5 Q/ ^0 q2 [
$ u: x7 @4 ?% j. N$ O
; |$ M; X2 ?1 s0 O#
. |6 V0 ?3 q; c# ?5 ` q1 F2 \6 `# 计算与指定用户最相近的邻居
3 o, P& z% D1 f+ L, ?# ~# p# 输入:指定用户ID,所以用户数据,所以物品数据. o% G9 q- r, ~& A% A
# 输出:与指定用户最相邻的邻居列表
$ y1 x1 I5 i2 I9 D s9 K#
: K0 A2 U( Z# y& J9 p sdef calcNearestNeighbor(userid,users_dic,item_dic):
3 d, L0 T) l- p2 j, T9 u/ ] neighbors=[]
" y& d e& ~7 o! k0 F; K+ m #neighbors.append(userid)
/ H+ }3 V5 J) _8 p& D& V0 j1 I3 b! c for item in users_dic[userid]:' e% o3 \4 H8 c* _ l! D
for neighbor in item_dic[item[0]]:
2 `. W6 ^# \$ }/ ~ if neighbor != userid and neighbor not in neighbors:
. h2 u: p0 W7 q9 F& e. N neighbors.append(neighbor)
& d( I& S3 y9 P# h
- I% _4 q# h6 I% A6 V neighbors_dist=[]
" B: O7 B; Q5 _/ H9 Z) R for neighbor in neighbors:) ]2 ]0 @( M( r% t4 Z1 c
dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe
, p6 e2 \4 b* k! ~2 Y; u neighbors_dist.append([dist,neighbor])% i( b) u& G- j3 ]2 b$ o+ H
neighbors_dist.sort(reverse=True)
0 ~. }4 r% i! d0 h- ?( C #print neighbors_dist
' r/ E' e6 C3 z$ p: u5 X return neighbors_dist
V1 {7 m( ]9 q6 {. _1 R3 O0 `$ W7 Z& B$ P! t) t5 n3 O$ B
/ e* k2 x8 @$ {: E0 k7 V: K, K#
5 m, P3 a' T4 h0 e: F# 使用UserFC进行推荐
3 o3 S& D! M3 T4 g7 g; O2 y( I9 K0 ~# 输入:文件名,用户ID,邻居数量5 x% b- Y* m* ?( X* ^
# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表
0 Y& H ~( ?( f* {#8 D M# d9 P0 Q$ O* A9 z$ A, Z
def recommendByUserFC(file_name,userid,k=5):. G# {1 Q' Q) ^4 n1 w
3 |- I3 K( C8 {7 m #读取文件数据, Q7 p* T1 I3 y5 f* X5 G- c' {
test_contents=readFile(file_name)
1 w1 N/ }- e* N % @& x% M) Q% P: D2 o" ?
#文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...]
. i4 C: ~, T5 J, w* r# F# O d1 h test_rates=getRatingInformation(test_contents)
0 u1 r4 `1 j, d/ s0 J4 O1 i
: g, F X/ J( R A #格式化成字典数据
! l" P+ |# W+ t- C6 r5 k: ^# j # 1.用户字典:dic[用户id]=[(电影id,电影评分)...]
6 p4 {2 i3 M; h$ @ # 2.电影字典:dic[电影id]=[用户id1,用户id2...]
/ J) p+ B1 |2 e. g test_dic,test_item_to_user=createUserRankDic(test_rates)3 o5 L4 Y" K% Y% }$ J
" E$ \/ ^: x g" e1 l #寻找邻居7 w, Q: L: U* L% v
neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]
- t7 y6 t: v" N* G) e- U9 r4 D5 r; t ( v9 |* E" f) b) w I( b+ p$ W
recommend_dic={}
8 h7 w/ L$ x1 e4 o for neighbor in neighbors:
, Q9 d- K2 @% _* D& L' U6 H' L neighbor_user_id=neighbor[1]/ y& s9 M6 u$ Z# r% ]
movies=test_dic[neighbor_user_id]
4 G2 d* m* k, H8 m; M/ V5 ?& C for movie in movies:3 n: K O" ~7 j4 v. Z$ _
#print movie
$ F7 t) l, `, H2 B: I6 w: e$ S if movie[0] not in recommend_dic:
3 f8 j9 N; m, d, |- y! L X6 |( y recommend_dic[movie[0]]=neighbor[0]5 g; m+ F% I9 x: h! [( @7 ]( X
else:) {" Q4 V2 { C/ r/ W
recommend_dic[movie[0]]+=neighbor[0]( X/ r# y; S2 i. ?8 O" `0 Y
#print len(recommend_dic)
& o# W1 }6 s" N" b4 Y, n3 d 6 J# X; `/ @+ ?4 ^" D, K
#建立推荐列表
' y+ X; ~1 n2 }7 K( U recommend_list=[]
4 ^5 v( b+ v9 p$ L+ I" J$ h: i7 | for key in recommend_dic:6 D6 N0 L& f- E# k5 `
#print key' p/ D$ f3 F/ N m' B T' u
recommend_list.append([recommend_dic[key],key])
9 G" L) Q; w4 Q% ^5 N
% s, m! Y1 @. v7 y/ D F4 ^
; S* i4 l/ i# b1 K% M recommend_list.sort(reverse=True)
1 I6 I8 O8 y7 S #print recommend_list8 T! U- @6 L) [$ `
user_movies = [ i[0] for i in test_dic[userid]]# R0 u: @# h' H
; v9 ~3 o1 T+ H. V
return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors
) t: L( H0 p- U& z' d/ A3 Z
( h6 Y# p' O9 w4 `; o; H/ v & p7 S' ?# S! `% c! g7 j
- N Y/ C& c) z# c1 s#5 Z+ O* [3 w( U0 a- E
#+ ?- \" f# |, u2 X9 Y {
# 获取电影的列表7 D* @9 T. y9 z& U
#
5 M8 L T8 @( G- y4 j' v: q" i#" G# r! E& \8 z5 W
#
$ t! f V# Z& v, J) Gdef getMoviesList(file_name):$ K- Y$ h. g2 j4 U/ i$ e& t3 o
#print sys.getdefaultencoding()
0 s" t1 a t. t) u' n$ s4 { movies_contents=readFile(file_name)/ b! ?+ j0 z7 B; M
movies_info={}
$ h) u- n2 E" G for movie in movies_contents:
8 R! Q7 f6 A% i u movie_info=movie.split("|")
% h/ E6 W/ Q; g$ z% u) q# { movies_info[int(movie_info[0])]=movie_info[1:]
4 h7 ^" w) u: Q* h$ U return movies_info5 ]' `, n. p/ x$ e
) x: J8 _. H2 K& z
5 k2 G `! o" E* Q7 S) q
" [, B; \' E5 q* g; J
#主程序3 `5 p0 V" _6 H. y
#输入 : 测试数据集合
! t2 N5 q& o' uif __name__ == '__main__':
8 V+ X: E( v6 E: A; f& {- _3 B reload(sys)7 N7 w b/ Q& D7 k0 ^
sys.setdefaultencoding('utf-8')
4 Q9 ^9 o, l9 x! n2 D movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")0 h6 H& i+ B# v
recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)* |: S# @" J( ~7 K$ Z6 M ~3 Y
neighbors_id=[ i[1] for i in neighbors]5 |4 j+ E5 J4 H( z- |
table = Texttable()( b I5 F+ K+ A1 {2 L/ C" P3 K& Y
table.set_deco(Texttable.HEADER)! H/ d( L; e: t- B
table.set_cols_dtype(['t', # text " ?3 X9 }6 \7 G: S
't', # float (decimal)& a- g; Y- c: k! V: u4 n9 `
't']) # automatic
* Y3 O( k5 p5 x& V table.set_cols_align(["l", "l", "l"])
% ~3 E, i% i( ^ rows=[]" m. h S& q5 Y( v. n c
rows.append([u"movie name",u"release", u"from userid"])
S& [ l3 {, t for movie_id in recommend_list[:20]:
! |" y% t0 Z5 h from_user=[]4 p& g% F! r" q- a
for user_id in items_movie[movie_id]:! \, x# J7 h! S4 _# g0 d4 {
if user_id in neighbors_id: z9 I' Q O y, Y, A8 k
from_user.append(user_id)
/ ^1 w2 ] F& m9 I x# U+ M. q rows.append([movies[movie_id][0],movies[movie_id][1],""]); f* U' Z% X0 a6 O7 {. [( `5 T
table.add_rows(rows)" e3 H3 g# \" I" W- ^$ m `
print table.draw() |
|