- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
---|
签到天数: 691 天 [LV.9]以坛为家II
 群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
14、索引: 5 U- z+ B0 `3 h/ b; b
>> r=[1 2 3]
+ \% }( j9 k- r" s/ }( ]5 E5 b2 Q) ?0 Z: w% }9 [' l
r =
. k& b2 S6 u. l. t0 W. o
1 e" N, r3 J: z" Q1 2 3 ; b. I+ {% E8 w" M8 |
; D# U. _4 A2 Z$ u0 M# d
>> R=r([1 1 1 1], %其中R的行通过[1 1 1 1]索引了四次,因此R有四行
; S* a. v; c: `7 a
+ q- C& X7 d* s& ~' f: VR = , K2 X* x" E/ P0 v9 b' m+ k+ a
/ o) S3 v5 J/ L: M7 q6 f" i1 2 3
8 h2 k+ O. v p: {: Y8 n1 p- I1 2 3 0 i" L- h0 a ]' C+ ^+ W
1 2 3 , {1 m5 C* a" q4 b
1 2 3
F; ] B% |* u8 D1 A G5 F* T2 ?. y. R: b1 `& K
" h4 @- o0 [) Q, s( M& Y& C# O# H
indexes to subscriptàind2sub 对应的还有sub2ind - L; }" s$ z# w! {
index指数,subscrip下标、脚注i2s是由序数得出坐标,s2i是由坐标得出序数,这两个函数只需要知道矩阵的大小(更确切的是维数,即多少行、多少列),也就是矩阵的size(A),而不需要知道矩阵A的本身。
* Q4 A, G% j2 u# T% [9 U/ b+ v/ _3 S4 g1 A6 i
15、分清逻辑数组和数字数组的区别(可以用class函数鉴别) / F* X7 O1 y) o/ z; r
>> B=[5 4;2 -3]
9 X2 U' w I1 J9 Z7 U& }+ s* V5 p( ^5 F; v4 w9 Y
B =
& b, \1 F; D7 V5 `- j% ]3 ^% l2 g4 A- o8 J% A P1 N$ Z7 P8 L
5 4
( D8 q% K3 P1 r* A) D6 a$ k5 l/ }* S2 -3
+ E& Y6 E7 ^* U. u6 F" i- E/ O- P这里的B即为数字数组,且使用class进行检验得到 6 K' t o. j; G$ \& z$ |- c
>> class(B) ' e& u1 j5 n5 G
H% w) ^1 ~& V! O9 ?0 `ans =
3 G- o. j( r% e0 E5 u6 m, J
( ?; P. q7 E+ p/ L# R& Pdouble
# C7 W: a. s4 q5 j7 L# E7 i7 p$ z. n/ k( k: \9 j% [0 g G2 s
>> x=abs(B)>3 " Y# _' z* D4 h. b y6 V6 G
' g$ v" z' B! d0 d7 y# h% mx =
$ t) _& A$ t. ~1 h1 H2 t0 P. m$ }1 ^; g D- Y+ @7 t
1 1 * k: g" v1 c+ C) v% ?
0 0 ) y4 m n' ^/ f$ e) A
这里的x即为逻辑数组,且使用class函数进行检验得到
1 [9 o3 }- i+ ^>> class(x)
- t& s$ ]5 y/ q, u! f( d' O T, q: a! Z
ans = 5 G1 x4 J h9 E3 o/ j5 O
6 ~9 N- O" B8 l6 xlogical% logical也是一个函数,可以强制将数字数组转化为逻辑数组;这个可以这样理解,用数字数组指定数组下标就可以提取出具有指定数字索引的元素,另一方面,用逻辑表达式和函数logical返回的逻辑数组指定数组下标,就提取出值为逻辑真1的元素。
6 _" A9 ~6 @ _% I$ p) }& F>> B(logical([1 1;0 0;]))
" f" c2 i+ a# o( a+ }8 V! z
' A% L4 z* P3 c+ h, g! V+ E9 F! R$ Uans = - o5 \; s: y% d3 @
6 F2 W( H7 J$ `5 D8 \% \0 F
5 3 b" `# L4 f! P
4 . _# I2 a1 G7 [3 \+ x# ]6 x& Z6 F
使用logical函数可以根据数字数组转化为逻辑数组,并对已有数组进行索引,将逻辑值为真的元素输出; ) p: l$ _* w: M) @ D/ z" J
B(x)
3 N/ N% `" [) R, U0 h) D) t) u' E+ k, W
ans = 2 V" m) j5 Z- J# r5 b2 h
" _- ~0 X) E. M0 p
5
- H( s' w4 Y* O- w4 / B" b0 R- }% K" A' c. a
从这个例子中我们可以看到,数字数组和逻辑数组用肉眼是无法分辨的,但是计算机却清楚的知道哪些是逻辑数组哪些是数字数组,数字数组必须转化为逻辑数组才能够对相对应数组进行索引,而逻辑数组可以直接对相对应数组进行索引;
6 @* [* k- D- \: Z+ K逻辑数组必须与相对应数组有相同的维数,如果逻辑数组x的维数小于数字数组B,则逻辑数组x中缺少的那一部分会被假设为false,如果逻辑数组x的维数大于数字数组B,则逻辑数组x中多余的那一部分必须设置为false。(废话真多,其实就是逻辑数组x与数字数组B的维数不同时,就按照他们相交的部分来进行逻辑判断,决定是否输出,其他的均不输出)% y+ a) F, F# g/ l1 W
$ ^1 G" S$ @0 e# R+ D% V- Z( Y
9 [+ L+ y/ h5 }' Y/ P' j! A8 Z
: O0 K0 Y# X5 J/ W1 J) f
2 d1 x4 d' m/ c* j7 \2 l2 b |
zan
|