- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit! @% Y, V' t& t7 V t
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4! n* n0 [; g& F" N2 N3 \
% k6->k6 k7->k7
. r9 \+ T! M' E3 R0 d1 r% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
6 \* }( i; ?: k* ]% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);5 |' V4 n& J c5 [
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);. Q$ J$ I: T j) i) O
% dLadt = k(7)*C(Hmf);
- X5 B* y ~& ~! j) a" }%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);: } l% E2 W% i6 h' f9 ]8 K. O
clear all
- ~( H. n* Y3 A$ V3 y! {clc
' e, `9 ^4 k. z! Qformat long; m v% d) O# j2 k A
% t/min Glc Fru Fa La HMF/ mol/L
`2 n7 u& _4 [8 K8 Q- L4 h% } Kinetics=[0 0.25 0 0 0 0/ a' A+ y+ p! c# D- R( H
15 0.2319 0.01257 0.0048 0 2.50E-04$ ]' r3 k2 \- ~7 ~, e! G' K( {0 j
30 0.19345 0.027 0.00868 0 7.00E-04
Q ~- R* |% V Z 45 0.15105 0.06975 0.02473 0 0.0033- S5 y/ q7 t1 t3 y0 ?1 f7 X! G
60 0.13763 0.07397 0.02615 0 0.00428
% Z, ~ Q( p( b# i/ K 90 0.08115 0.07877 0.07485 0 0.01405
- ~0 G6 _6 O' a. n6 t# ?1 N/ I 120 0.0656 0.07397 0.07885 0.00573 0.02143$ F# X1 D( Q2 f& F ~* V& H
180 0.04488 0.0682 0.07135 0.0091 0.03623
) @# i+ K3 x/ {. b; q A$ G 240 0.03653 0.06488 0.08945 0.01828 0.05452( y' N8 Q5 g. i {) e
300 0.02738 0.05448 0.09098 0.0227 0.0597
- @( O6 A& p3 l! c4 P5 j3 E 360 0.01855 0.04125 0.09363 0.0239 0.06495];
: h) Z# o( s7 x+ ^, H8 \k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值' Y5 ?) E* c6 `6 U' Q: I, ^: K9 Z( U
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限- m' J3 T/ v) o0 v# {
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限* T' ?" e$ z4 B3 C3 c& \6 z- I
x0 = [0.25 0 0 0 0];- C6 R! V0 d8 X0 C$ x: R, z
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
. i! z& C! I9 P3 C6 c% warning off
) ?3 z+ [+ V5 c. d/ J& B1 O5 s% 使用函数 ()进行参数估计* I- ]6 Z6 q+ o3 T9 f0 g
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
, t0 \/ S! a3 g" E5 _( Sfprintf('\n使用函数fmincon()估计得到的参数值为:\n')
$ B* k2 z' h, q7 P2 vfprintf('\tk1 = %.11f\n',k(1))
( O; p& e! Q$ M6 a4 efprintf('\tk2 = %.11f\n',k(2))
2 ]* [/ d. ^- Y) r4 Q) Sfprintf('\tk3 = %.11f\n',k(3))& m: K. k: m- p0 i
fprintf('\tk4 = %.11f\n',k(4))9 u/ `' l! y v. l7 [' \
fprintf('\tk5 = %.11f\n',k(5))
& `" q) A% [+ u" Ffprintf('\tk6 = %.11f\n',k(6))0 H U! W4 e, |2 p9 M/ N/ w
fprintf('\tk7 = %.11f\n',k(7))5 C% Y" m6 a, j0 [% P
fprintf('\tk8 = %.11f\n',k(8))6 c, N) d% l/ n8 m3 O
fprintf('\tk9 = %.11f\n',k(9))* ?5 o6 h: ]$ W( b1 J# ^; e9 a& }
fprintf('\tk10 = %.11f\n',k(10))" v5 l7 m) `' K8 u0 l
fprintf(' The sum of the squares is: %.1e\n\n',fval)
; O* F8 }! u2 l) X2 O6 |2 q+ tk_fm= k;5 \- i' n& T2 C6 B, y
% warning off$ m7 x! U3 Y' \- p4 q+ R8 s1 E
% 使用函数lsqnonlin()进行参数估计
; i% g8 E7 e$ G' A l% z) n T[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...' [! x& a% S* X, E7 L; x0 c
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
3 c/ D& @; b4 T* }" D3 U$ ~% `8 ici = nlparci(k,residual,jacobian);
# _( X- ~) ~* u5 Ffprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
0 m# X9 O6 G2 T: _4 mfprintf('\tk1 = %.11f\n',k(1))/ u' F4 F& p( k4 i
fprintf('\tk2 = %.11f\n',k(2))
+ u- k2 e- K) f1 o4 s- dfprintf('\tk3 = %.11f\n',k(3)), k5 l5 G" t% O; G
fprintf('\tk4 = %.11f\n',k(4)), p0 N% s* e( e: O/ r+ [. U# M
fprintf('\tk5 = %.11f\n',k(5))
1 E8 k3 ~; h4 T' }% H) Zfprintf('\tk6 = %.11f\n',k(6))
" \& \ n% Y) y8 afprintf('\tk7 = %.11f\n',k(7))' w, q4 {# b/ `% Q5 Q. ?$ k
fprintf('\tk8 = %.11f\n',k(8)) c1 l: r. _4 o/ ^: H
fprintf('\tk9 = %.11f\n',k(9))
* V4 x% R* I2 j9 Y" s8 K l' x* \1 hfprintf('\tk10 = %.11f\n',k(10)). |$ y) j! }, C1 Y @
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
# K1 R* `$ C0 Uk_ls = k;
- Y+ J. Y7 J) f$ j# j7 Loutput
+ a6 [3 M" o. j/ z8 }! o- Vwarning off
" h, L5 E8 S. G6 x* n& b( h1 @0 ]% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
S. F0 ^3 v1 Wk0 = k_fm;
, U2 t. y- }# Q* Y[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
! P" @1 B* R/ [1 J* m lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
- _) s8 q+ k% D2 T0 `% J% tci = nlparci(k,residual,jacobian);# H! l7 t0 ?4 e4 H
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')% G: L/ M: \; X# [3 }
fprintf('\tk1 = %.11f\n',k(1))' Z2 f1 F0 u/ G% j$ n2 b7 c
fprintf('\tk2 = %.11f\n',k(2))
1 d) ^( j% v9 C# h5 T( hfprintf('\tk3 = %.11f\n',k(3))% B, a0 B1 b, C4 R5 y5 f, w1 r3 C
fprintf('\tk4 = %.11f\n',k(4)). B: P B1 e8 n: B+ z
fprintf('\tk5 = %.11f\n',k(5))9 K, E: e7 \/ k
fprintf('\tk6 = %.11f\n',k(6))
" R+ o. Y* s+ l& Y: Ufprintf('\tk7 = %.11f\n',k(7))# D" f/ f! K# K7 k5 J, K' l* t
fprintf('\tk8 = %.11f\n',k(8))
9 r- D" r* ~ J0 L/ s, N5 R8 Dfprintf('\tk9 = %.11f\n',k(9))( }- e0 }: M$ e) I) V) a
fprintf('\tk10 = %.11f\n',k(10))
2 G' l! L0 v1 F' g7 G( R* Ifprintf(' The sum of the squares is: %.1e\n\n',resnorm)+ _ q, Q% G) z
k_fmls = k;, V6 L& m( y+ q9 V$ O. B7 k3 q
output
* [0 B/ f6 q" u. jtspan = [0 15 30 45 60 90 120 180 240 300 360];
, D U& \) T* d( _. v: p" K[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); 3 d3 e9 h6 }3 n1 m; X
figure;
) ?( T( v/ S/ r, J/ P" Mplot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')" w ]' z) `* H0 X$ h9 Y
figure;plot(t,x(:,2:5));
4 c3 D: |5 c% lp=x(:,1:5)5 l0 ]0 `6 t( g# e3 m
hold on% ^! Q# s( ]; `/ \& s, v
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')' Z$ O0 U9 B9 l9 d% g' }6 y- R% J$ x
& d8 p& Y' [7 k/ y
' Z# |' j1 b+ G" S/ U9 i, y3 ?0 L1 b! U) B
function f = ObjFunc7LNL(k,x0,yexp). R) Y: D. f( V* q! I
tspan = [0 15 30 45 60 90 120 180 240 300 360];; O5 z: C5 H( ^
[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
3 u y' ~6 H# g6 v) y3 hy(:,2) = x(:,1);, _0 W! v( _! C. n: C8 }
y(:,3:6) = x(:,2:5);, V: | P8 Z- U$ e, v
f1 = y(:,2) - yexp(:,2);, H1 V# V5 U- i5 N! T
f2 = y(:,3) - yexp(:,3);
5 U) v: m ]6 Y; ]- Mf3 = y(:,4) - yexp(:,4);
5 @# R" p6 S! u' @- h r, u( uf4 = y(:,5) - yexp(:,5);
* Y: K* N t( ~1 W) H) b0 jf5 = y(:,6) - yexp(:,6);; a( {6 X, }$ v& X7 E6 F
f = [f1; f2; f3; f4; f5];
. j* q2 A; }" z& i8 m$ {8 [, b2 T% k1 _( E' P6 Z
0 |: O* `+ l' v& |1 [$ s9 a s
, u) Z# r' M; U+ y
function f = ObjFunc7Fmincon(k,x0,yexp)
3 Q& @9 y0 d; D7 }( Gtspan = [0 15 30 45 60 90 120 180 240 300 360];2 z0 X; l8 O9 H* ?# G1 s6 K
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
' V. l0 E5 h) K: ~, n' Py(:,2) = x(:,1);, o) L% p( H2 ~, f% G7 z7 R
y(:,3:6) = x(:,2:5);: @) h% R8 ^( V" c; `
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...5 @ c0 O1 i* \# q
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ..., }2 K0 y$ ? u* _$ i8 \
+ sum((y(:,6)-yexp(:,6)).^2) ;
7 Z' }: w) v& x- r6 l* W& r3 t9 @ Q" E: g0 ]3 A8 Q
! K, x; ]" Y2 P: i1 Z' A# Q9 W
% x( [1 A( y, y' k$ J6 Q& l4 ?3 T+ r4 x! ~
function dxdt = KineticEqs(t,x,k)
3 p- C* J1 a2 p8 ^8 pdGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);+ O3 \4 @% w0 |5 U" q% N
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
$ o6 D' H/ i) ]- GdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);3 O6 o8 y7 r3 B8 l
dLadt = k(7)*x(5);
; r8 n3 L: b% S% {. `dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);1 T: Z5 J& g/ `( @) x* p7 J" A
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];6 j. @0 R3 t7 y2 a% ?8 k7 ^: W
5 l& i3 s: d2 e
, c' j" ?( B, V7 p2 I" x V8 r
|
zan
|