Suppose U is set of objects, E is a set of {0,1}-valued parameters 4 d. \2 }- S8 }! e6 }# {9 f 2 }, g6 n& }& L( C! y$ l' ~for describing objects in U. For any u in U, define an additive utility 7 P, N7 N. i3 v) V: a% s; K
( d! k" x9 R4 |7 x' } y, Kfunction f as follows: , a: W+ v, N" F; T7 i9 D7 b 1 t0 ~# {: @/ c5 g( _" k f (u ) e (u ), (对e属于E,e(u)求和) ; Q* \- z* |7 o# E + S1 h. u' W$ y! H; m9 F+ w) V e E # L' C! w# D# S7 H# R6 r K J7 k8 p0 o- D Q! B* Bwhere e(u ) 0,1. u is called an optimal solution if it is one of the 4 P) T% P# h4 g( H& V3 B& f" j5 k0 q8 k6 Y4 ~$ c# X1 Z6 ^
maximum points of function f with respect to normal order. For 7 k4 T0 k3 R* Q4 [
3 N2 ~; Q+ p4 z9 lcertain reasons, some values are missing. It costs if we want to find # \& M6 r9 w. v6 ?, h2 | " [3 B1 q5 S+ C2 g+ e: ^* gout what these values are. We assume that we know nothing about , L* `" E( a1 Z5 Y2 g! y
* z5 ^# R/ g4 q5 J* f
the probability of these values being 0 or 1. So my questions are: 4 d3 t- K6 u& n! J a
; d2 { h. I; I: S: I
(1.) Which unknown value should we figure out firstly if we want to ' g+ l. n+ t+ x+ Z8 Y' l* g" G8 s% [
4 H% r; ^- x. d) F( }; N1 k
find at least one optimal solution?