QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 113391|回复: 559
打印 上一主题 下一主题

[美赛经验] (原创笔记)《数学模型》学习笔记(姜启源老师第三版)可作预习、辅助、大纲 - 公开欢

  [复制链接]
字体大小: 正常 放大
sdccumcm 实名认证      会长俱乐部认证 

59

主题

165

听众

5484

积分

升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    跳转到指定楼层
    1#
    发表于 2012-7-19 11:00 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    本帖最后由 sdccumcm 于 2014-1-8 12:39 编辑
    3 E2 A8 {* T# y' K7 Z# m5 c6 x6 k) e( E( a* W
    《数学模型(第三版)》学习笔记
    * l6 i! C$ u6 X& W" G
    写在开始/ C0 p; z5 K  u8 ?: u! Y& Z0 N6 `
          今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是.& X" p+ Z- p8 v
          整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:& r0 X6 d2 [: V) @2 m6 i) e; ^

    . ?1 T+ |$ S  {) M1 ]/ Q2 T(一)  “实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;7 Y+ f* q/ x8 c* z: O- c( h
    (二)  模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;2 g- q  V8 C) U$ X* h& {. L& H
    (三)  用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。9 a/ h' ]9 S1 v
    $ p$ T5 H  T( b/ Y. v- l
          从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。/ p* s- i$ y( a8 N) A1 @3 q* C
         也可以作为未读过、准备读这本书的同学的参考~ - t7 \4 _' D# Y2 t5 M
                                                                                                                     ——Tony Sun   July 2012, TJU

    + |7 X+ W, v1 ]/ |& `0 H7 c/ p. h$ g" B# [3 M4 @9 s* J5 O
    (目前已更新:全12章)
    & k  c4 b- }* [
    6 J% u; l, X, M& m3 D- I
    第1章 建立数学模型
    7 ?0 ?. e, V, [5 [; M6 `! z关键词:数学模型 意义 特点
       
    0 k& f* R) c4 e$ X" H   第1章是引入的一章,对数学模型的意义来源,做了很好的解释。其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。但通常,数学模型有严谨的特点,而且我们可以根据建模实际需要改变模型,成本也比较低;同时数学模型手段之一计算机模拟也有很好的效果。4 G( U; L8 F" K4 h& B
       椅子在不平的地面上放稳、商人安全过河、预报人口增长这3个熟悉的例子,用简单的数学进行描述、建模分析,给数学模型一个最好的诠释:用数学语言描述事物、现象——往往增添了说服力。! l- }4 x+ I& T6 K
    2 b, \/ D' r; S& ]( P
    " W' h* Y2 o, M5 l% M' J/ D
    第2章 初等模型* |, h' H/ [0 @! b" C. w9 n
    关键词:初等数学 简化技巧 思想
    ( B& T# z) @$ E# j% G  e
        这一章顾名思义,是一些用“初等”数学知识建立、求解的模型,虽然数学知识比较易懂,但是其中的巧妙思想确实十分重要的。
    1 A- ^) C3 `! r2 e. ^8 P& i    如何把问题做恰当的简化,到简单的数学工具能够表示、求解的程度,本章做出了很好的例子,同时分析也很精彩。
    9 B: _4 t8 g5 o% x# N9 G6 ?    2.1节公平席位分配,通过定义不公平程度等衡量标准,确立目标,提出Q值法。有意思的是,在考虑是否存在一个理论上公平的分配方法时,根据所提出的4个(毋庸置疑的)公理,得出的结论却是:不存在满足上述公理的分配方法。这种类似情况在本书中后面的例子也出现过。  这给我们什么启示呢?有些问题和工作,比如公平席位的分配,日常中是一定要做的,就算不能达到绝对公平也要分配,但一旦证明不存在理论上公平的分配方法时,我们还有分配的意义吗?答案不一;在这个例子中,固然是有意义的,我们自然转而寻求一个相对公平的分配方法,抑或,就是回溯查看提出的“公理”是不是那么的“公理”,看能否通过删改公理来取得更公平方案。
    & h* Y. `5 r" w) i    录像机计数器、双层玻璃功效、刹车距离等模型,均是用日常现象、基础的物理知识和巧妙简化进行的建模分析,这里每个例子中的分析,求解后的解释很重要——它们是整个模型的关键,阐述现象。
    3 j$ }7 N" _* p# x4 b    2.7 实物交换——是后面经济学模型的雏形,无差别曲线的图形方法,确定这种曲线实际中要收集大量的数据;核军备竞赛一节,也是一个动态的变化过程,基本全是用曲线进行分析的——这里给我们一个思想,得出表达式后,许多时候我们只关注曲线的形状、趋势,因此作图分析是很好的方法,图中可以给我们很多信息(交点,截距,极限值……),而这些信息都一一对应着它们的实际意义;有些即使没有明显的含义,但也很可能为接下来的铺垫、预测作下铺垫。
    / o# |  s+ |) `8 X% ^     2.10 量纲分析与无量纲化——是另一种重要的求解方法,大致来说思想就是:仅知道变量之间的制约关系(正/负相关),系数、阶数均未知,即只能得出表达式的“形式”,要我们通过“量纲齐次性”(等式两端必须保持量纲的一致)来确定具体的表达式。这是与按理论推导建模并列的另一种方法,这一节用单摆、抛射等物理问题很好地诠释了这种方法的强大。  关键:恰当地选择特征尺度,不仅可以减少独立参数的个数,还帮助我们决定舍弃哪些次要因素。物理知识和经验是关键。
    / ~4 g! Q$ r# j$ N. ^$ M/ `2 b# \, B% H  U2 t/ ?9 g
    第2章小结:+ X& @) x. y" E" x, t/ T
        本章可以总结为“初等数学知识+巧妙简化技巧+思想”,10节涉及了不同类型的问题、数学方法,很多都是本书后面章节模型的雏形、基础。. d: ~! I$ P* u$ f

    - M+ g# ]0 ]1 R
    * B! \- B; `/ [# V7 J' t
    第3章 简单的优化模型
    9 B0 a8 N& X1 I% Q关键词:简单优化 微分法 建模思想
    / V! n3 ?* T7 ]5 x/ `. t) |0 h, J
        本章与第4章连续两章都是优化、规划的问题,可以看成一类问题——内容上也是由简单到复杂。在第3章中,主要是几个简单的优化模型,可以归结到函数极值问题来求解,直接用微分法。虽然模型、数学计算难不倒,但是还是那句——建模,求解之后结果分析、结果解释的思想,是我们要学习和引入脑中的。
    5 B. F0 x9 u7 k: M% R  E) j- s" ^( _- N. a) d, L) z
    3.1 存贮模型& o7 j+ y! O. ^
        分不允许、允许缺货两种讨论,中间推出一个最小费用的结果——经济订货批量公式EOQ。 对存贮量函数q(t)作图,观察规律,对结果解释。
    : ]% t1 f7 d. s+ y7 l. Y3.2 生猪出售时机* I7 g2 q- n: l% v7 S# {
        关键点在于敏感性分析和强健性分析——这对于优化模型是否实用、有效是很重要的。
    9 l4 }" O/ U& _% K# k- n( q3.3 森林救火
    - P0 }6 \. d5 B! Y: l7 M; I' ]    亮点是对火势蔓延程度dB/dt的形式作出的数条假设,以及假设对应的实际解释。只要合理、自圆其说,就是一个好的对实际问题的简化。
    0 b0 j" Q8 L+ G# s' j3.4 最优价格
    ' K& Q' d, `* F4 B& f0 F    主要是引出边际收入、编辑支出,以及经济学一条著名定律——最大利润在边际收入等于编辑支持时达到。
    8 u9 Q! Q: Y9 ~0 P! W; X2 n3.5 血管分支' p; c! S5 h' ~9 u
        是很有趣的一节,用数学模型研究生理问题,我们还是只关注建模、数学的层面,而对于血管系统几何形状等生理学知识不讨论过多,用合理有力的假设代之。
    , v/ l9 D; T0 q4 ^' T# [( l: \3.6 消费者的选择
    9 A! K2 h. e! {( K! F    一个消费者买两种产品时,钱应该如何分配。分配比例使他得到最大的满意度的最优比例乘务消费者均衡,而建立消费者均衡模型的关键在于确定效用函数U(q1,q1)。
    ( c. z, r* G7 H  j1 x3.7 冰山运输
    / O. w4 ~0 W4 r( r9 I. P) `    也是很有趣的问题,考虑各种因素,基于一些假设,这节研究怎样运输冰山使费用最小。其中用实际数据建立了经验公式,二是假设冰山为球形,简化了融化规律等的计算。
    , J9 q+ K( @, e5 Q2 \+ r, H5 w( o% b7 c

    ! q  Y- P) d+ w  E, P6 P
    第4章 数学规划模型
    ) G" p( R$ a3 B% P- m& {% v3 _关键词:数学规划方法 lingo/lindo软件 结果深入分析 变量个数

    9 n+ G( b: k! W. C; j3 \    约束条件、可行域、目标函数,构成了常说的“数学规划”模型。本章揭示了数学规划的本质,和它与传统优化数学问题的区别:常理优化模型属于函数极值问题的范畴,但实际中更多的是决策变量数、约束个数较大,且最优解往往在边界上取得的问题,因此不能用传统的“微分法”求解——因此要引入“数学规划”方法。$ Q% \" N  R4 g# G

    . u$ b% e) @8 T7 r: ]$ }    这一章内容不少,但都是一类问题,主要点有几个:8 Y% [6 r6 x+ i. t2 o9 q8 q: g4 v0 t
    1. lingo、lindo求解的使用——运行结果中还有一些平时未留意的信息,可以作为结果分析来用,前两节叙述较多;/ G5 c8 w6 X2 T0 c
    2. 一些细节之处:把一句话用数学公式表达,它往往作为约束条件,如p102的式(19);3 j" J! t  c6 y% y. K+ d9 Y
    3. 多目标规划的处理,p109的“选课策略”——基本思想是通过加权组合形成一个新的目标,从而化为单目标规划;
    " g# {1 x9 _" b4. 同前面章节一样地,对一个问题解出结果后,问题虽然解决了,但分析并没有结束——我们要学习这种further discussion的精神,发现这个结果“恰与…相同…”之类的,不妨多问自己一句:“这是偶然的吗?”然后继续分析,得出一般的结论,这样往往能看到更多的风景,得出的结论更有含金量/启发性,而不是仅仅是解决了该个问题而已。如p109选课策略。
    4 ?; D& R# m8 y: H8 q& q' e5. 减少变量个数,简化模型、式子(简化起见,同时lingo对变量个数有限制),p115销售的例子。
    $ H( d' Z: g( {/ y% x. F4 t7 c6. 求最优解时,为了减少搜索范围,加快速度,可以先去一个特殊情况求出一个可行解,然后让最优解至少优于它。% U9 @' n) r! k' e: o6 c+ t% p3 N
    ( Y2 C1 z. w( j# K; u9 ^  U

    2 n5 P  F6 X2 _( A$ H7 s) ~1 A
    第5章 微分方程模型
    # C% u' _2 u  h4 X0 `关键词:动态模型 合理假设 分析预测 控制

    ! p% t9 a) W; M1 b. G1 R7 D8 J    这一章是非常经典的一章,对微分方程模型作了很好的诠释、介绍,每一个模型都有丰富的价值。对于随时间连续变化的对象或状态,当我们要 1)分析变化规律;2)预测;3)研究如何控制它的时候,就要建立相应的微分方程模型。
    - r# L) ]3 ^3 w1 T  k    自然地,这样的模型功能非常强大,也具有一般性,也自然地需要在简化假设上动脑筋——如何用数学语言能表述的东西来刻画一个实际动态过程。一个方程,有时就表示着一件事,这件事有可能还持续几十年——多么有趣而强大。
    ; V, w  D/ C9 ]& l0 I# V3 U. J0 b( R. W, b
    5.1 传染病模型
      z+ a. |$ e5 f    本节是解决“传播”、“蔓延”微分方程问题的典例,模型分三部分层层递进:SI(只分为易感染着、已感染者),SIS(已感染者可以被治愈,重新变为易感染者),SIR(治愈后具免疫力,即增加了“移出者”)。可以说从基础模型到一步步递进,是对实际传染病情况的逐渐深入、全面的考虑,而其中的分析十分重要,也是本章分析得最细的章节。其中引入了“相轨线”分析法,是很有力的工具,后面多次用到,这一节有很详细的介绍。0 B" ?! k- q: O0 m
        模型改进、建模目的性方法三者配合,是本节亮点。
    " M# n( M$ G  N+ H2 o$ N" Q  I% z5.2 经济增长模型

    8 |# ]# j% e3 q0 \, z8 J/ F    通过建立产值与1)资金;2)劳动力之间的关系,来研究1)资金与劳动力的最佳分配,使效益最大;2)如何调节资金、劳动力增长率,使劳动生产率有效增长。' g+ J  F6 W- F/ l# }
        本模型虽然不长,但推导出计量经济学一重要模型——Douglas生产函数。本节给出的模型推导稍繁,但结果简明,有合理解释。( k8 ?2 @2 b- _6 j* H
    5.3 正规战与游击战. h2 f9 x7 Z+ I  V" E( D& N( |
        这一节介绍了历史上用过的、经典的预测战争结局的数学模型,有传统正规战争、稍复杂的游击战,以及混合战。重点在于建模过程:如何描述战争双方的特性,如何作假设。然后用来分析硫磺岛战役。这节很好地体现了微分方程的强大。
    4 r0 j, @) p9 ^3 v$ _: w# u5.4 药物在体内的分布与排除
    # O2 w: [( A4 ~" V    本节建立了房室模型,研究血药浓度的变化过程,为制订给药方案、剂量大小提供数量依据。重点在于1)模型的假设:尽管是简化,但由临床试验证明是正确的,可以接受;2)对参数的估计。3 T( b  `, v1 C7 h3 u6 f0 Y
    先由机理分析确定方程形式,再由测试数据估计参数。
    8 n" d" e' s* c3 p5.5 香烟过滤嘴的作用* o' A7 ~0 U4 U$ J. U
        看起来不易下手的一个问题,用恰当的假设,引入两个基本函数q,w,及物理学常用的守恒定律,建立出微分方程模型,从而构造动态模型。本例是经典的建模案例。* l3 L6 \6 ]" K6 H
    5.6 人口的预测和控制
    7 M6 D% z+ [3 Y0 N. |: H4 h    本节模型与之前的区别在于:考虑年龄的分布,即除了时间外,年龄是另一个自变量。过程中重要的是数学公式中,系数、因子的实际含义要解释。
      c% `5 N& q3 E( _& u: r5.7 烟雾的扩散与消失* h0 g2 V  }' g$ H/ w! X
        这个模型巧妙地引入了“仪器灵敏度”指标,不仅帮助建模,而且该指标本身是客观存在的,并非虚构,这样更加有说服力。
    8 U+ c# E8 }) ?) \# {* ~5.8 万有引力定律的发现
    / K- X- Y3 ^, [; K. P8 J    十分有意义的一节。我们初中就熟悉的牛顿万有引力定律,是由开普勒第三定律和牛顿第二定律一同推导出的,这一节再现了这个推导过程。这个模型告诉我们:正确假设+用数学演绎建模=对自然科学研究的巨大作用。我们要学习科学家前辈们如何创造性地运用数学方法,来提升我们解决实际问题的能力。$ B7 ^; l- W2 z

    / L/ \# @9 n3 M& ^3 h
    8 B7 v* `, x0 p6 A5 j
    第6章 稳定性模型
    ) a. E7 C7 q# t3 u' p' l8 h2 b: t+ {9 W关键词:稳定性理论 建而不解 平衡状态 趋势 相轨线
    7 v3 p  m8 t; M, [4 D* L; @( F- H
        本章是建立在上一章的基础上,在微分方程基础上引入的一种重要思想/概念,那就是——对于某些问题,我们可能不关注动态过程的每个瞬时状态,而是研究稳定状态的特征,特别是时间充分长以后的状态/趋势,从而判断是否“稳定”。这时我们往往不需要“求解”微分方程(组),即“建而不解”;而是利用“微分方程稳定性理论”直接研究平衡状态稳定性即可。1 K: K  `9 g: O

    * F: ]% \+ \: \& U3 D2 }*6.6 微分方程稳定性理论简介; M+ K% A2 S2 S# _' |, i4 }
       这一节应为优先阅读的一节,介绍了如何判断一阶、二阶方程的平衡点和稳定性。数学推导稍复杂(对于未接触过的同学),重要在于了解一些概念、结论,在模型实例中来进一步理解。9 |- U7 C- ~. ]; i

    . m/ s; ]; j1 p. q+ [4 J9 }6.1 捕鱼业的持续收获( s2 s1 O6 J1 D# w( z7 z* V3 q
        研究捕鱼业产量、效益和捕捞过度问题,如何捕捞能获得最大收益。这个问题虽然看似只需要给出一个“捕捞量”的答案就可以了,但是模型整个过程分析中还是得出了许多结论,如经济学捕捞过度、生态学捕捞过度等概念。在稳定的前提下步步深入。
    ' N* J8 c- n1 v3 B6.2 军备竞赛" M$ D) S% i- n
        这个问题在第二章初等模型中就出现过,这里用微分方程稳定性的知识来分析。正如本节引言所说,军备竞赛因素很多,无法圆满描述,只是想告诉我们:一个复杂实际过程可以被合理简化到什么程度,得到的结果又怎样解释实际现象。
    ! g0 ^2 O& B$ B% C. b3 L2 ?' U6.3 种群的相互竞争 6.4 种群的相互依存 6.5 食饵-捕食者模型) l& f; r+ _+ v, q9 n* M" w
        这三节作为一个系列,用种群竞争、依存、捕食这类生物学案例来诠释稳定性模型的应用。其中,相轨线分析法再次成为主角,它的意义在于:从图中曲线上直观地看出发展趋势,且特殊点对应的意义作出解释。) g: y9 i& }9 L6 D! I

    9 J- f  o/ A3 T/ w) U% ]
    , L2 E4 C- a$ H9 A4 {) b7 a0 c- ^5 M7 a
    第7章 差分方程模型* a2 D) x4 z. q; F/ [* s1 k
    关键词:差分方程稳定性 离散时段 差分阻滞增长 混沌

    3 W2 d$ {$ U! k0 o+ `8 u2 E    将时间离散化后,就可以建立与微分方程相对应的差分方程模型。这章与第8章讨论的是确定性离散模型。实际上有些问题既可以用连续,又可以用离散,要看目的而定。离散的一个优势在于,便于计算机求解。! n) v- H% q4 h, B, q; C  F
    : z2 M- A& a: o) b7 V. C( h- \" K: U
    7.5 差分方程简介:介绍差分方程稳定性的知识,判别稳定的条件。本章要用到的知识。1 N- B! k8 n' e( s% r5 a# n3 ?
    7.1 市场经济中的蛛网模型' C+ z- k: T5 N1 C1 v7 s" D) p, H
        先用图形法建立市场经济的“蛛网模型”,给出趋于稳定的条件,再用差分方程建模,解释结果。本节开头的“问题前瞻、介绍”部分很经典,可作为建模论文写作的参考。
    ; a  Z  e$ n. P9 Z; \* Z! q    本节最后对结果的解释也非常值得学习:启示我们,一些数学结果如参数前后的变大/变小,可能意味着什么,我们不要轻易放过,而是要时刻不忘解释相对应的原因。
    9 x& q4 H! z+ Z5 J, |7.2 减肥计划——节食与运动
    ( r% V5 W; w2 t( Z$ N( j    这是一个很生活的问题,主要讨论如何把一个“超重”的人减到目标的正常范围内(均以WTO颁布的体重指数BMI衡量)。4 W/ b4 A0 ?9 f9 k( B
        我认为这个模型的两点仍然在建模本身:及如何将减肥计划中“减肥”这一件事量化,用数学的语言可以表达,写出差分方程。其中p208的“基本方程”式(1)是整个模型的基石,有了此式后面的工作就可以往上搭建了。注意到,式(1)其实是一个“建而不解”的方程。
    ) l2 l$ O3 a  M  ?    但正如节末评注中所述,实际参数的设置会更复杂,代谢消耗系数beta也因人而异、因环境而异,所以要有更多核对。但我们先要学习的还是建模这一步。+ q6 H( S+ b1 O* J4 ^
    7.3 差分形式的阻滞增长模型# R4 k2 E$ c- s1 }- d+ x( s0 s
        此节是与之前用微分方程Logistic规律描述的“阻滞增长”规律最好的对比。有时,用离散化的时间研究比较方便,本节是很好的参考。(按:本人曾经做过用差分方程加修正,描述人数传播问题,个人认为很多情况用差分方程更好,也更“诚实”些,因为我们也只是想要每个时段的数量)
      j7 v) a  `% I; F  N    要注意的是:若用离散描述,需要说明各“时段”指代意义。推出p211的式(6)后,这个一阶分线性差分方程,也是“建而不解”,但注意:此处“不解”是指不需求通项公式,但各项的值仍要计算——用计算机递推可方便得到。我们最关心的往往是k趋向无穷时,y/x收敛情况,即平衡点稳定性的问题。这里微分、差分方程判别上有区别。
    # v" }* B% q: \3 p7 H    P212中,通过深入讨论和213页的数据表发现,不同的参数b下收敛情况不一,然后发现了“倍周期收敛”的规律,即存在多个收敛的子序列。然后发现当n区域无穷时,不在存在任何倍周期收敛,出现混沌现象(Chaos)。
    & W  \" N% a# F- r3 O! ^& U6 s. b3 a    混沌的特点为对初值极度敏感,这一点在物理课中老师也提到过,许多非线性方程均是如此,即“差之毫厘,失之千里”,蝴蝶效应。
    0 P/ [. s" h/ J- v3 t7.4 按年龄分组的种群增长
    1 y' }4 O8 e6 P1 v1 F. r4 ?" d    这个模型的主要区别在于:将种群分成n个年龄组,分析各年龄组对种群总量增减的影响。这一节的数学推导稍繁。
    6 W4 n6 p/ r! j! R: d* H6 T& u% {2 E4 J- h& M( ^
    ' B) n  [8 g/ D1 R: z; a) G
    第8章 离散模型4 k9 }  G7 v" N# u# t$ \. l
    关键词:层次分析 排名次 冲量过程 “分赃” 群体决策
    # O+ ]- C3 U( c7 z(本章是确定性离散模型的应用、方法)
    ) j4 a: V2 |3 u+ e, n. ]
    7 g7 [4 u& [  Q" W* ?
    8.1 层次分析模型

    / P* r$ s! Q. D7 g; o    社会经济系统分析工具。排名、评分评价,排等级都可以用层次分析模型解决,数学知识虽然不深,但是思想十分巧妙且合理,可扩展性也很好。关键在于1)“成对比较矩阵”的确定及修正,2)特征根法求权向量的原理(重要),3)1-9比较尺度(Satty等人提出),4)一致性检验。
    9 _, z7 D; k: K8 H8.2 循环比赛的名次2 G7 s4 f" u, g( B5 j3 G
        这节也是对一些排名评价“难题”给出一种经典解法:邻接矩阵+得分向量。转化为计算各级得分向量s、A最大特征根&对应特征向量s。按常理一般只会想到基于原邻接矩阵的1级得分向量,若比不出则停滞了;但若将i级乘回邻接矩阵,可以“发展”到i+1级得分向量——这个思想是本模型的关键,而且简单易用易理解。6 F! u, `8 L4 Y( r
        对于所谓的“下一级”得分向量定义的原理依据,或实际意义,是此思想的关键,我觉得可以接受,看上去很有道理,但未想出具体的解释,这里欢迎指教、讨论。(p246)! f/ B; A" I; ~& G; O
    8.3 社会经济系统的冲量过程
    9 w& P9 Y; k2 m* X' H( }; x+ T    区别于机理分析、统计分析,冲量过程与层次分析属于“系统分析”,是近20年来发展起来的解决复杂系统的有力工具。
    $ _+ ~5 p& e8 x; v) G" a    这节模型研究能源系统中,各个因素的趋势、预测问题。主要工具有:带符号加权的有向图,冲量过程(类比物理“冲量“概念)。其目的无非是研究系统的“稳定性”,以及如何“调整”到稳定。这是实际问题关注的。
    0 j; c# J) s. B+ I" r0 w8.4 效益的合理分配2 ~7 E$ g% H6 }. w) Q8 ~
        几方(大于3方)合作,已知不同子组合可获得不同收益,那么一起合作后,谁的功劳最大?也就是说,干完活后,如何“分赃”——这里是理性的、用数学推理的公平的“分赃”。
    7 ?: d. ?  f0 @$ O$ s: e' V5 K3 U5 I本节介绍了3类方法:Shapley值,协商解等,Raiffa解。最后用一个3方分配例子对比了这3种方法。3种方法特点在p262。是客观求各因素权重的有力途径。
    3 \# R" y; f  B! R8.5 存在公正的选举规则吗  `6 j' Y8 |. n. O
        这一节类似第2章的“公平席位”。主要讨论的是“群体决策”这一类问题。
    , a$ s8 G( ?7 j/ v" k    首先是简单的选举规则。+ X" `, a" n  s/ z% }
        接着介绍Arrow K的工作:提出一组公理,却证明不存在满足这组公理的选举规则,但很具有启发性。* g: p0 T, `# B
        然后是联合尺度选举规则,它是一个简单易行的规则(但是对投票情况限制了,才可能满足Arrow公理)。% e* N9 u- f+ M
        最后是一种与Arrow公理无关的规则——最小距离,这是一种类比思想,很巧妙地把公平转化为距离之和最小的最优化问题。1 \4 g; O) J9 Y/ I/ Q

    4 `/ v+ y3 O! s3 {: W* y# w0 P  X  z) {8 m% o5 T
    第9章 概率模型; Y+ ^% A5 h" o" J) y& _5 ?
    关键词:随机模型 基础概率 生灭过程 数值解分析
    * J2 J$ c2 r) D! i
        相对“确定性”模型来说,当随机因素的影响不可忽略时,就要建立随机模型。概率模型就是比较简单的随机模型,这一章用我们熟悉的概率分布、期望、方差等知识介绍概率模型怎样处理随机因素的。
    ' o2 {* w: M% H3 C  n( X& h1 J    关键点有:1 |  D6 L6 y! a& n' u, y- r* Z3 Q9 [
    1. 如何定义随机因素相关的量。针对一个实际问题,做好定义是开始工作的根本。
    ( X) Q1 A6 n- L* _2 R2. 随机概率模型一般从离散角度(一个个时段)下手,但求解中为了需要可能会转化为连续(如p274的求和转化为积分)。. }1 T& c  _. k! p8 B& c. T
    3. 要灵活根据实际问题,决定哪些参数应设为定值,哪些参数会变(如9.4轧钢问题,重量服从正态分布中,均方差应认为是已知的定值,而均值是可以调整的)。& ~  h9 N9 q- n( t0 t2 x+ i& T
    4. 一般的“生灭过程”参考9.5的随机人口模型——相比之前的人口模型,这个更加一般,考虑的因素更多,更接近实际。
      s) B9 N/ a* q5. 有些模型无法解析求解,然而数值计算的结果已满足我们对问题进行分析的需要(9.6预订票策略)。& E) P9 ]/ b- y! x# o8 p% T

    6 B5 d( S* x8 S' N: m0 v- F
    " g- [' x  Q6 \3 F5 E# S. A
    第10章 统计回归模型
    & A  q3 i! N' Q关键词:数据拟合 MATLAB统计 残差分析 自相关 逐步回归
    2 G4 p2 Q/ P; b; W' w  Y. k
        对于有些内部规律复杂、无法分析内在机理的问题,我们建模、拟合的通常做法就是搜集大量的数据,用统计方法建立模型——统计回归模型。$ [  W6 u) _. n, v8 G* J. k; w
        关键点有:3 g3 C* t9 p' n9 }
    1. 做散点图,大致判断函数趋势(比如有明显的线性增长),确定方程形式,待定系数。/ b! T" R! H6 Z
    2. 用MATLAB统计工具箱regress拟合,得出结果;重点:如何由MATLAB输出结果下结论(如置信区间不要包含零点,R^2、F)。) n7 g  E5 w+ a) H: y7 c4 ~
    3. (考虑实际问题制约)适当引入变量简化问题,如10.1中引入价格差(p297最后一段说明)。  x) u3 W3 x$ q" g7 ^' K5 Q  e
    4. 利用好回归变量的预测(置信)区间。
    # K( i; B3 K" V" F7 X5. 改进回归模型:逐渐考虑回归变量之间的交互作用——在方程中引入二次项、交叉项。若MATLAB拟合输出信息表明有改进,则说明模型更符合实际。还可加上作图对比前后模型(p300)。2 J' m$ n6 t$ G6 N" w# }$ k
    6. 残差分析(p305,但这页我未看懂具体做法,待交流),及分析得出的结论,我们应该怎样改进模型。* W2 P( I8 h5 }: k
    7. p307评注内容:0-1变量法、残差分析法、异常值应剔除。4 [3 \4 B* k& S# @! v/ y
    8. 线性化(p309),及非线性MATLAB求解(p310);p315最后两段。
    5 l3 F( b( D* W: _; i6 k9. 自相关的考虑(10.4节):若存在自相关性(具有滞后性,即前期对后期有影响的时间序列),普通回归模型将失去意义。我们必须先检测是否存在自相关(D-W检验、广义差分法),同时注意若高阶自相关,则必须改进直至不存在自相关为止。0 k7 d: {6 q. {7 M% r" z9 F
    10. 逐步回归:因素较多时,排除次要因素,用来选择影响因素显著的变量。
    - \) j( [2 l' C( ]8 C& y# c1 i. ^; {5 E9 O
    " i5 U" A5 L7 z# t- C  I- [
    第11章 马氏链模型3 D& H+ ^. L' g7 K/ u+ y  N
    关键词:离散随机过程 无后效性 转移概率 状态选取

    3 G, o9 y% n: L+ O9 H6 f基本概念5 Y/ e9 W) L" A3 t2 ]
        这一章介绍了处理离散随机过程的重要工具——马氏链模型,及若干个应用。总体从浅到深,阐述了马氏链的主要思想。
    2 {( e$ d  [& Z) A3 q1. 无后效性/Markov性: 系统在每个时期所处的状态时随机的,这个时期到下个时期状态按照一定概率进行转移,且下个时期状态只取决于 1)这个时期状态 2)转移概率,与以前各时期状态无关。8 V5 g- C- _8 ~0 R
    2. 马氏链(Markov Chain)模型通常描述: 已知现在,将来与历史无关,具有无后效性的,时间状态均离散的随即转移过程。) f' i+ Y5 x1 d4 s: G$ u9 O" @
    3. 一些确定性系统的状态转移问题也能用马氏链处理。; k' i/ U7 q% [: B2 Q7 X
    8 o3 G. o$ d% F0 R, N% |
    一、健康与疾病
    7 k; B2 N/ a; b6 n' V2 T    主要介绍马氏链基本概念、要素: 系统的状态,状态概率,转移概率,马氏链基本方程,状态概率向量,转移概率矩阵。本章讨论时齐的(转移概率与时段n无关)马氏链。
    & |: ?* j* |8 J& O' ]    同时介绍2种主要类型——/ J' k* E6 n, n, N, g* t8 o
        1)正则链:从任意状态出发,经过有限次转移都能达到另外的任意状态(如何判断是正则链、相应定理);5 u3 y! J. k/ T) j
        2)吸收链:首先引入吸收状态,顾名思义吧,就是某个状态的转移概率=1,即进了这个状态就出不来了,被“吸收”掉。  吸收链是(至少)存在一个吸收状态,使马氏链从每个费吸收状态出发,能有限次到某个吸收状态。5 g* h0 E# g7 \9 x& \' D! G
    二、钢琴销售的存贮策略
    ) K& g/ k& D3 G    动态随机存贮。一个简化的存贮模型,关键是从中理解状态变量、需求量、转移矩阵的设置和求解。 判断转移矩阵P为正则链后,用公式求出稳态概率分布w,就是达到稳态后的情况,然后用全概率公式算出失去销售机会的可能性。 这个模型虽然简单,但却是动态存储马氏链的浅显易懂的好例子,其中结合实际问题具体分析是最值得学习的。
    0 L7 b8 x1 y/ N: \9 [" N( z三、基因遗传' [/ V- w1 h/ r3 ]! f2 [1 S4 r* O
        用马氏链模型研究遗传过程,关键是建模的过程——即选取系统的状态,这在“随机交配”和“近亲繁殖”中需用不同的设法。  随机交配过程推导的结果是 (p^2, 2pq, q^2) 分布将保持下去,即遗传学中的Hardy-Weinberg平稳定律;然而,近亲繁殖中,得到的转移矩阵发现是一个“吸收链”——即如果近亲结婚的话,若干代繁殖终将变成全是优种/全是劣种,并保持下去。这两个结论(虽然在理想化假设下)与我们之前的认识是很一致的,从中加深了马氏链的理解。' L+ N$ }* F% F, R& J, Z
    四、等级结构
    9 t+ s! ^+ B; n* e0 {: A, B) Q3 i    这个模型是用马氏链研究一个群体中各个个体等级分布变化情况,目标是研究等级分布变化规律,假设总人数不变。然后用某种途径让群体等级分布达到想要的稳定状态。" i& u' P& ~8 c7 r9 O( s
        重点在于变量的设置,以及还是状态设置、模型建立过程。  建模过后,先用“调入比例”这一现实中可控的量进行稳定控制,其中有“稳定域”的构造、分析。 然后是具体如何用调入比例,进行动态调节,实则转化为了一步步优化问题,动态调节的过程是一步接一步的,有重复循环的操作规律。这里也很好地体现了马氏链的“离散”特性,以及给编程创造了机会。& _' Y, ~% }8 z, G9 x
    五、资金流通
      m/ h& w2 M& S5 g5 W. f    基本与等级结构一样,一系列推导最后总结出步骤,先判断稳定能否达到,若能达到,则由公式算出每年应如何投放资金。  与等级模型不同在于:各地区资金进出可正可负;所有地区资金总和可以变化。3 j6 q! E4 j% o: q  G+ L9 @3 h3 G% u$ m
    % }) ?. n  Y. U8 L0 S: m; I2 ^6 {
    第11章小结:
    - K3 s# X, P! ?    虽然只有短短5节,但是几个模型由浅入深,循序渐进,学习中有逐渐清晰的感觉。过程的推导复杂度适中,具体问题具体分析的思想很经典。这章算是马氏链模型的基础,虽是基础但案例、思想也足够典型,是今后解决离散随机过程很有力的工具。! ?" E6 M, x3 Q' D  T6 Z
    6 G  f% z; C! r& X: ~' N
    第12章 动态优化模型1 X' M7 z. U; T/ K; Z
    关键词:泛函极值 变分法 动态规划 最短路

    + O% _" |7 Y8 ?4 A0 R. h9 v基本概念
    9 z1 w6 R& e9 z# |    本章介绍动态优化,优化目标,虽然优化目标仍然是数值,但最优策略是一个函数。连续过程归结于求泛函的极值问题(几个模型中一直体现),方法有古典变分法、最优控制论。几个例子都是能用古典变分法解决的,而离散过程则用动态规划求解。: u7 D7 u! _7 F6 B- v9 H
    1 Y$ v0 Q2 n$ H4 U/ U& q1 [
        第一节先用“速降线”和“短程线”两个17世纪末的物理模型引出变分法基本概念,和后面要用的结果;同时介绍泛函、泛函极值概念。
    % ~: g( j( K0 J1 N1 e& F    这一章的数学知识、推导比较繁杂(尤其是对于没接触过泛函等概念的学生),2、3、4、5节(生产计划制订、国民收入增长、渔船出海、赛跑速度)均是连续动态优化的典型问题,许多都是归结于泛函极值的问题。尤其是“渔船出海”,实属一个经济学的典例,这个经济策略分析中再次很好地体现了数学技巧、实际问题结合的巧妙。  i1 z  L0 U( M5 ~. O( Y
        第6节多阶段最优生产计划属于离散动态优化,用动态规划求解,转化为最短路问题,当中对最短路问题的算法做出了详细解释。 分别对确定需求、随机需求的生产计划制订方法给出了推导思路。
    6 e1 q% \& J3 P  t1 E
    ! r8 T% N6 G6 w, l9 H' t- N1 D9 i; S0 s& K; X8 J" n$ P3 g
    4 K0 s, |* F; S9 {, Z; g
          一点自己的感想。笔记总结得不大好,但我的物理老师说过:做比不做强!因此我只好硬着头皮小结了~  望指教!- Z9 \) ]$ u+ u8 x
       
    : {2 r& Y: p2 J$ I) x       自己的其他感想、学习心得,
    欢迎交流4 s5 N4 X" R3 o* I' f9 M
    MCM论文精析课程小结——2012.5.208 D5 T. }$ s. M# t8 g+ |4 e
    点上希望的蜡烛——每年一度的聚会,记2012全国大学生数模竞赛8 O% N1 U' \: E9 {% D  q# ~
    2013MCM, 平淡不平凡
    + ^5 T' S/ v8 h: q
    ) w3 }0 _( @) n* U* N
    附:感谢你认真阅读(或扫视)完这篇学习笔记性质的稿子,感谢你的兴趣,同时期待你能在建模学习中获得启发、更上一个台阶。对于短期/初期体验竞赛的同学,了解一些简单概念和思维,就像这本书中略读一些章节,再编一些经典的算法程序,是很好的敲门砖;对于长期学习建模的同学,固然要找机会夯实基础("内功"),也建议在学习过程中多思考,不仅是为了抓住知识的主干,更是为了发掘自己的兴趣,获得对自己今后读研、工作的启发。" ^) t: Z& v0 A
        本人现为一大四学生,在竞赛一线活跃度肯定不如各位,但之前的9次建模课题、4次竞赛的确给我帮助很大:开阔视野、团队合作、实际技术、责任意识。 知识学了就会有用的,不管是由于一阵没用而生疏,还是一直在加深印象。我一直相信这一点,并希望各位共勉,珍惜本科的时光,给自己多一些充实(英文中用"enrich"较合适)——因为不像金钱钞票或实物,这些知识能力、包括好的身体素质,是别人带不走的。" v& C" C2 w1 M1 M) V+ h
                                                                          ——2013年12月20日

    4 d0 k6 D! s% D& q# ^, Z- g, A, N$ [7 j' ^. R2 z

      v* M' u+ |% o4 H& c+ K1 s关于论坛体力:如果是刚加论坛准备长期学习,而下载体力不够的同学,可以给我发信息/回复帖子/加好友,写明大概需要多少点(如50)及下载资料类型,我可以直接转给你。  或者我记得可以用支付宝转账,好像1元对应30点;或者平时签到/分享帖子/写日志 都可以加不少(但不建议连续水回复一个帖子多次)。)
      F6 s, t9 L: ?; e0 S) s
    6 c; o, o1 \' z2 P5 ?: w

    poster_04.jpg (2.49 MB, 下载次数: 1519)

    poster_04.jpg

    《数学模型(第三版)习题解答》.pdf

    2.97 MB, 下载次数: 747, 下载积分: 体力 -2 点

    《数学模型(第三版)》.pdf

    18.98 MB, 下载次数: 1910, 下载积分: 体力 -2 点

    好书,可以考虑买本来学~

    优化Lingo笔记.pdf

    1.1 MB, 下载次数: 383, 下载积分: 体力 -2 点

    这个仅是一点书的截图

    《LINGO和Excel在数学建模中的应用》.pdf

    17.05 MB, 下载次数: 1420, 下载积分: 体力 -2 点

    推荐!前两章!

    回帖推荐

    sdccumcm 查看楼层

    今天决定比计划提前做完总结,本来晚上已经写好,但数学中国一直上不上,换几种网也是很卡,直到较晚才上。 粘贴上发表后,却发现板式很多地方不好,由于是用代码编辑的字体,所有标题都要重新设置一次。这里也想请教下各位有没有简便的方法啊(在数学中国写帖子的时候,设置字体格式,不用那个代码)。刚才反复看效果、改了10多次……

    点评

    13506769794  超给力的!!!  发表于 2021-8-13 14:06
    13506769794  。。。。。。。。。  发表于 2021-8-13 14:05
    13506769794  。。。。。。。。。  发表于 2021-8-13 14:04
    周少侠在江湖  很不错,鼓励共享  发表于 2017-7-27 16:26
    阳光照耀的日子  确实不错  发表于 2016-6-10 11:53
    zan
    已有 4 人评分体力 收起 理由
    总有以后 + 20 一次很好的学习
    mcm-dlu-edu + 80 很不错的,鼓励共享。
    woaixueshumo + 180 很不错的,鼓励共享。
    darker50 + 4 赞一个!

    总评分: 体力 + 284   查看全部评分

    本帖被以下淘专辑推荐:

    • · 数学|主题: 8, 订阅: 0
    转播转播5 分享淘帖1 分享分享8 收藏收藏45 支持支持14 反对反对0 微信微信
    Learn from yesterday, live for today, hope for tomorrow. 借鉴昨天,活在今天,憧憬明天。
    sdccumcm 实名认证      会长俱乐部认证 

    59

    主题

    165

    听众

    5484

    积分

    升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    欢迎讨论啊

    点评

    白加黑  第一次参加,有种无从下手的感觉,怎么办??  详情 回复 发表于 2015-7-13 22:11
    回复

    使用道具 举报

    sdccumcm 实名认证      会长俱乐部认证 

    59

    主题

    165

    听众

    5484

    积分

    升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    sdccumcm 发表于 2012-7-23 23:17 5 m7 |# R8 l+ F' \& L+ p% G% U7 `
    欢迎讨论啊
    4 t) k" v6 G4 |3 a! m* v+ m! i
    欢迎提意见~

    点评

    sdccumcm  ………………………………  发表于 2012-7-24 09:19
    回复

    使用道具 举报

    sdccumcm 实名认证      会长俱乐部认证 

    59

    主题

    165

    听众

    5484

    积分

    升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    回复

    使用道具 举报

    雾柳        

    0

    主题

    6

    听众

    578

    积分

    升级  92.67%

  • TA的每日心情
    开心
    2015-6-9 15:19
  • 签到天数: 165 天

    [LV.7]常住居民III

    自我介绍
    .。。。。。。。。

    社区QQ达人

    群组小草的客厅

    群组学术交流A

    群组学术交流B

    回复

    使用道具 举报

    sdccumcm 实名认证      会长俱乐部认证 

    59

    主题

    165

    听众

    5484

    积分

    升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    雾柳 发表于 2012-7-25 10:56
    5 }& i: N) o# W8 F. g是要多多回复
    5 M( l' ?/ f! ~2 p" a! g6 e
    呵呵~~~~
    回复

    使用道具 举报

    雾柳        

    0

    主题

    6

    听众

    578

    积分

    升级  92.67%

  • TA的每日心情
    开心
    2015-6-9 15:19
  • 签到天数: 165 天

    [LV.7]常住居民III

    自我介绍
    .。。。。。。。。

    社区QQ达人

    群组小草的客厅

    群组学术交流A

    群组学术交流B

    sdccumcm 发表于 2012-7-25 12:44 % Q, k' h, G7 v% M( v! e
    呵呵~~~~

      P9 @  g- i6 Y6 @不太好笑耶
    回复

    使用道具 举报

    sdccumcm 实名认证      会长俱乐部认证 

    59

    主题

    165

    听众

    5484

    积分

    升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    雾柳 发表于 2012-7-25 15:31
    7 R9 o) u# L$ t1 v7 G不太好笑耶
    - n/ g4 n7 X: v$ M
       额……
    0 |  q9 I: l. X+ H欢迎提出宝贵意见啊,有问题直接指出哈~~~
    回复

    使用道具 举报

    sdccumcm 实名认证      会长俱乐部认证 

    59

    主题

    165

    听众

    5484

    积分

    升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    今天决定比计划提前做完总结,本来晚上已经写好,但数学中国一直上不上,换几种网也是很卡,直到较晚才上。
    ; n1 c" s* u' V7 d7 V& ~' V% }# ^粘贴上发表后,却发现板式很多地方不好,由于是用代码编辑的字体,所有标题都要重新设置一次。这里也想请教下各位有没有简便的方法啊(在数学中国写帖子的时候,设置字体格式,不用那个代码)。刚才反复看效果、改了10多次……

    点评

    sdccumcm  额……………………………………………………………………  发表于 2012-7-27 09:46
    回复

    使用道具 举报

    sdccumcm 实名认证      会长俱乐部认证 

    59

    主题

    165

    听众

    5484

    积分

    升级  9.68%

  • TA的每日心情
    开心
    2015-9-28 12:07
  • 签到天数: 832 天

    [LV.10]以坛为家III

    2012挑战赛参赛者

    邮箱绑定达人 发帖功臣 新人进步奖 风雨历程奖 最具活力勋章

    群组MCM优秀论文解析专题

    群组2012第二期MCM/ICM优秀

    群组科学狂想曲

    群组第二届数模基础实训

    群组学术交流B

    sdccumcm 发表于 2012-7-26 23:25 % o4 u  x' [4 [- p
    今天决定比计划提前做完总结,本来晚上已经写好,但数学中国一直上不上,换几种网也是很卡,直到较晚才上。 ...

    ) b# k% x' D% O大家多多包涵!
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-12 02:05 , Processed in 0.611888 second(s), 108 queries .

    回顶部