QQ登录

只需要一步,快速开始

 注册地址  找回密码
楼主: 葫芦一笑
打印 上一主题 下一主题

完美的证明了“戈德巴赫猜想”

[复制链接]
字体大小: 正常 放大

8

主题

4

听众

156

积分

升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    21#
    发表于 2012-3-29 21:30 |只看该作者
    |招呼Ta 关注Ta
    一、 分解自然数
    + s- P. l0 h& G! ?" ~- F5 ]1 n首先将所有的自然数分解成六大类:6N,6N+1,6N+2,6N+3,6N+4,6N+5.
    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    二、        分析奇数属性
    " B. o4 Z# q& y. q9 E; b* K# r' j<一>分析奇数6N+1的属性
    : N# Y9 h! x. q2 A3 Z9 p' x数列6N+1中的数值包括质数和非质数两大部分。$ z3 N% A: I+ O! R+ F& g) o5 z
    其中非质数部分,由于数列6N+1不属于数列6N、6N+2、6N+4和6N+3的倍数。
    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    因为数列6N+1或者数列6N+5的乘数用代数式表示分别是:(6n1+1)(6n2+1)、(6n1+1)(6n2+5)、(6n1+5)(6n2+1)、(6n1+5)(6n2+5)。
    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    n1和n2属于自然数。因为,数列6N+1中的数包含质数和非质数两大部分。很明显,当n1和n2不等于0时,代数式(6n1+1)(6n2+1)和(6n1+5)(6n2+5)属于非质数。
    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    只有当n1=0时,代数式(6n1+1)(6n2+1),n2>0.和(6n1+5)(6n2+5)中,有唯一的代数式1*(6n2+1)是质数表达式。
    回复

    使用道具 举报

    8

    主题

    4

    听众

    156

    积分

    升级  28%

  • TA的每日心情
    开心
    2012-4-14 00:22
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    ——这是无限之中的“相对有限”,并且是唯一的“相对有限”。这个唯一的“相对有限”的代数式代入了特定的自然数之后,就变成了可以无限表达质数的公式。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-7 16:54 , Processed in 4.608146 second(s), 95 queries .

    回顶部