QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2312|回复: 3
打印 上一主题 下一主题

Spotting Ultrafine Loops in the Sun's Corona

[复制链接]
字体大小: 正常 放大
张立涛 实名认证       

280

主题

5

听众

2452

积分

  • TA的每日心情
    奋斗
    2015-10-7 09:09
  • 签到天数: 75 天

    [LV.6]常住居民II

    优秀斑竹奖

    群组西北工业大学

    群组Matlab讨论组

    群组狂热数模爱好者

    群组岩土力学与地下工程

    跳转到指定楼层
    1#
    发表于 2012-6-13 11:40 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Spotting Ultrafine Loops in the Sun's Corona

    A key to understanding the dynamics of the sun and what causes the great solar explosions there relies on deciphering how material, heat and energy swirl across the sun's surface and rise into the upper atmosphere, or corona. Tracking the constantly moving material requires state-of-the-art telescopes with the highest resolution possible. By combining images from NASA's Solar Dynamics Observatory (SDO) and a new generation telescope called the New Solar Telescope (NST) at Big Bear Solar Observatory in Big Bear City, Calif. scientists have for the first time observed a new facet of the system: especially narrow loops of solar material scattered on the sun's surface, which are connected to higher lying, wider loops.

    120612193202-large.jpg
    Left: An image of a magnetic loop complex as captured on July 22, 2011 by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. The image shows light in the 193 Angstrom wavelength. Right: This covers the area of the sun roughly in the middle of that shown in the SDO image on the left, as captured by the New Space Telescope. Together the images were used to observe and analyze ultrafine loops of magnetized material in the sun's atmosphere.

    These ultrafine loops, and their wider cousins may also help with the quest to determine how temperatures rise throughout the corona.
    "We're used to seeing magnetic loops on the sun," says Philip Goode of the New Jersey Institute of Technology in Newark, NJ, who was a co-author on a paper on these results in the Astrophysical Journal on May 1, 2012. "But we've never seen ones lying so low, that were so cold, or that were so narrow. These loops are 10 times narrower and at least 10 times cooler than the higher loops often seen by SDO."
    Goode and his colleagues, Wenda Cao and Haisheng Ji used the two telescopes to observe these loops in data from July 22, 2011. The combination of NST and SDO allowed the researchers to trace the flow of energy from the cooler ultrafine loops observed with NST to cospatial and cotemporal brightenings seen by SDO in the overlying million degree corona. In the NST observations, the loops show a nearly consistent width of what Goode says is a "surprisingly narrow diameter" of only about 60 miles across.
    The team aligned images from the NST, which can measure magnetic fields to high resolution, with the SDO images to find the magnetic footprint of these loops on the sun. The magnetic maps showed that the loops lined up with fine lanes on the sun that separate what's known as granules -- cells on the star's surface that can be loosely understood as bubbles of boiling solar material that rise up from below. After the material, or plasma, rises up into the granules, it sweeps out to the sides, and flows back down these intergranular lanes. The lanes are consequently believed to contain concentrated magnetic fields, the perfect place for the origin of these newly spotted magnetic loops. The very position and shape of the ultrafine loops, therefore, help confirm models of the sun's surface.
    Goode and his colleagues did more than just categorize the size and shape of the loops, however. They also tracked the loops through time as they rose up into the sun's corona, a process that may help solve a persistent question in solar physics, namely why the sun's atmosphere, or corona is so hot.
    Scientists in the early 1940s discovered that the sun's atmosphere is some thousand times hotter than its surface. Determining just what processes heat those gases up to millions of degrees has been a key research area ever since.
    "There have been many suggestions over the years as to what mechanism can make the atmosphere a thousand times hotter than the surface of the sun," says Goode. "They basically come in two categories. The first is that there's some kind of continuous magnetic energy adding heat. The second is that there's an impulsive, intermittent movement that adds heat. And there are, of course, all kinds of variations and mixtures of each theme."
    In this case, the appearance of the ultrafine loops seems to be correlated to intense magnetic field collisions. The largest groups of loops also corresponded to solar phenomena called Type II spicules, which some theories postulate contribute to coronal heating.
    "We observe an impulsive event at the sun's surface, and this excites low-lying and higher-lying, wider loops almost simultaneously," says Goode. "It's just a correlation at this point, but for the first time we've observed something happen at the surface and we can track it up through heating of the corona. This doesn't answer the question of whether it's the only mechanism that heats the corona, but it certainly seems to be at least one mechanism."
    In addition to the value of having seen such fine structures for the first time, Goode and his colleagues believe this is a great example of how the NST can coordinate with other instruments, such as an upcoming NASA Explorer called the Interface Region Imaging Spectrograph or IRIS, due to launch no earlier than December 2012. IRIS will focus exclusively on the area of the sun's atmosphere at the base of the corona, an area crucial for coronal heating. The NST's capabilities will mesh nicely with this since it can measure magnetic fields in the same regions IRIS will be observing.
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持1 反对反对0 微信微信
    优秀的男人最有魅力!

    1

    主题

    4

    听众

    267

    积分

    升级  83.5%

  • TA的每日心情

    2013-4-11 23:12
  • 签到天数: 51 天

    [LV.5]常住居民I

    自我介绍
    数学爱好者

    群组数学建模

    群组Matlab讨论组

    群组交朋友

    群组数学趣味、游戏、IQ等

    群组数学建模培训课堂1

    回复

    使用道具 举报

    33

    主题

    10

    听众

    1691

    积分

    升级  69.1%

  • TA的每日心情
    开心
    2014-7-8 08:29
  • 签到天数: 201 天

    [LV.7]常住居民III

    发帖功臣 新人进步奖

    群组PLC和单片机

    群组2012第三期美赛培训

    群组MCM优秀论文解析专题

    群组沈阳理工应用技术学院

    群组学术交流B

    回复

    使用道具 举报

    15

    主题

    10

    听众

    799

    积分

    升级  49.75%

  • TA的每日心情
    开心
    2015-7-17 20:50
  • 签到天数: 68 天

    [LV.6]常住居民II

    自我介绍
    我是一名大二学生。

    群组2013年国赛赛前培训

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-3 07:35 , Processed in 0.429878 second(s), 70 queries .

    回顶部